Nazeeruddin, Mohammad Khaja 照片

Nazeeruddin, Mohammad Khaja

Professor

所属大学: École polytechnique fédérale de Lausanne EPFL

所属学院: Institute of Chemical Sciences and Engineering

邮箱:
mdkhaja.nazeeruddin@epfl.ch

个人主页:
http://gmf.epfl.ch/

个人简介

Prof. Mohammad K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. He joined as a Lecturer in Deccan College of Engineering and Technology, Osmania University, in 1986. Subsequently, he moved to Central Salt and Marine Chemicals Research Institute, Bhavnagar, as a Research Associate. He was awarded the Government of India’s fellowship in 1987 to study abroad. After one-year postdoctoral stay with Prof. Graetzel at the Swiss Federal Institute of Technology Lausanne (EPFL), he joined the same institute as a Senior Scientist. In 2014, EPFL awarded him the title of Professor. His current research at EPFL focuses on Dye-Sensitized Solar Cells, Perovskite Solar Cells, CO2 reduction, Hydrogen production, and Light-emitting diodes. He has published more than 725 peer-reviewed papers, ten book chapters, and he is the inventor/co-inventor of over 90 patents. The high impact of his work has been recognized by invitations to speak at over 250 international conferences, including the MRS Fall and Spring Meetings and GORDON conference. He has been nominated to the OLLA International Scientific Advisory Board. He appeared in the ISI listing of most cited chemists and has more than 105’000 citations with an h-index of 145. He teaches the “Functional Materials” course at EPFL and Korea University; directing, and managing several industrial, national, and European Union projects. He was awarded the EPFL Excellence prize in 1998 and 2006, the Brazilian FAPESP Fellowship in 1999, the Japanese Government Science & Technology Agency Fellowship in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor by the Korea University, Jochiwon, Korea and Adjunct Professor by the King Abdulaziz University, Jeddah, Saudi Arabia. Elected to the European Academy of Sciences (EURASC), and Fellow of The Royal Society of Chemistry. Education: Doctor of Philosophy (Ph.D), Inorganic Chemistry, 1986, Osmania University, Hyderabad, India. Master of Science (M.Sc), Inorganic Chemistry, 1980, Osmania University, Hyderabad, India. Passed with first class and distinction. Bachelor of Science (B.Sc), Chemistry and Biology 1978, Osmania University, Hyderabad, India. Passed with first class and distinction. Awards: EPFL award for Excellence, 2006 Brazilian FAPESP Fellowship Award, 1999 Japanese Government Science & Technology Agency Fellowship, 1998 EPFL award for Excellence, 1998 Government of India National Scholar award, 1987-1988 CSIR, Senior research Fellowship, 1983-1986 CSIR, Junior research Fellowship, 1980-1983

研究领域

The groups’ focus is the Molecular Engineering of Functional Materials for Photovoltaic and Light-emitting applications. In the field of molecular-based photovoltaic devices, dye-sensitized solar cells (DSCs) have reached an efficiency of over 13%. This efficiency level, coupled with the use of inexpensive materials and processing, has stimulated momentum to industrialize this technology. In these cells, the sensitizer, located at the junction between electron and hole transporting phases, absorbs sunlight and injects an electron and a hole into the n- and p-type materials, respectively. The former is an inorganic n-type wide bandgap oxide semiconductor (typically TiO2 anatase), and the latter is a liquid electrolyte or p-type hole transporter. The generated free charge carriers, travel through the nanostructured oxide to be collected as current at the external contacts. The significant advantage of DSCs is that they achieve the separation of light harvesting, and charge carrier transport, thus the maximum power point is virtually independent of light level therefore useful in all climate conditions. The general losses in dye-sensitized solar cells are due to the lack of sensitizer absorption in the near IR region, and the loss-in-potential from the optical band gap to the open-circuit voltage. The goal of the group is to engineer at molecular level novel panchromatic sensitizers and functionalized hole-transporting materials to achieve power conversion efficiency over 18%. Recently organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic (PV) technologies, with certified efficiency of 24,2% based on a perovskite solar cell. The group is aiming to enhance power conversion efficiency of perovskite solar cells beyond 25%, and stability using functionalized electron and hole transporting materials. Our group has pioneered a new concept of using 2D/3D interface to enhance stability under light soaking and heat for more than 12,000 h. Our results demonstrated an impressive improvement in device stability due to the favorable self-organization and interface energetics of the 2D/3D interface. This novel strategy opens a new field of possibilities, moving from uniform to gradually organized 3D/2D PSCs. The highest efficiency using 3Dimensional/2Dimentional perovskite layers in our laboratory is over 23.13%, and a mini-module 15 cm2 efficiency is 17.3%. These results emanate from the compositional engineering of the cations (A) and anions (X), using a nonstoichiometric lead iodide precursor and a solvent-engineering method to grow the over layer of perovskite on the mesoporous layer.

近期论文

In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley-queisser limit Z. Li; C. Wang; P-P. Sun; Z. Zhang; Q. Zhou et al. Nano Energy. 2022-09-01. Vol. 100, p. 107468. DOI : 10.1016/j.nanoen.2022.107468. Strain effects on halide perovskite solar cells B. Yang; D. Bogachuk; J. Suo; L. Wagner; H. Kim et al. Chemical Society Reviews. 2022-08-05. DOI : 10.1039/d2cs00278g. Charge transport materials for mesoscopic perovskite solar cells M. Vasilopoulou; A. Soultati; P-P. Filippatos; A. R. b. M. Yusoff; M. K. Nazeeruddin et al. Journal Of Materials Chemistry C. 2022-07-12. Vol. 10, num. 31, p. 11063-11104. DOI : 10.1039/d2tc00828a. The evolution of triphenylamine hole transport materials for efficient perovskite solar cells A. Farokhi; H. Shahroosvand; G. Delle Monache; M. Pilkington; M. K. Nazeeruddin Chemical Society Reviews. 2022-06-30. DOI : 10.1039/d1cs01157j. Functionalized BODIPYs as Tailor-Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells A. Soultati; F. Nunzi; A. Fakharuddin; A. Verykios; K. K. Armadorou et al. Advanced Materials Interfaces. 2022-06-24. p. 2102324. DOI : 10.1002/admi.202102324. Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Self-Diffusion of Dopants L. Wang; J. Xia; Z. Yan; P. Song; C. Zhen et al. Advanced Functional Materials. 2022-06-22. p. 2204725. DOI : 10.1002/adfm.202204725. Highly Efficient and Stable 2D Dion Jacobson/3D Perovskite Heterojunction Solar Cells Yukta; N. Parikh; R. D. Chavan; P. Yadav; M. K. Nazeeruddin et al. Acs Applied Materials & Interfaces. 2022-06-21. Vol. 14, num. 26, p. 29744–29753. DOI : 10.1021/acsami.2c04455. Structural and photophysical investigation of single-source evaporation of CsFAPbI(3) and FAPbI(3) perovskite thin films N. Klipfel; M. P. U. Haris; S. Kazim; A. A. Sutanto; N. Shibayama et al. Journal Of Materials Chemistry C. 2022-06-14. Vol. 10, num. 27, p. 10075-10082. DOI : 10.1039/d2tc01164f. Crack-Free Monolayer Graphene Interlayer for Improving Perovskite Crystallinity and Energy Level Alignment in Efficient Inverted Perovskite Solar Cells R. Hu; Y. Sun; L. Li; T. Wang; H. Kanda et al. Solar Rrl. 2022-06-12. p. 2200484. DOI : 10.1002/solr.202200484. Terbium-Doped and Dual-Passivated gamma-CsPb(I1-xBrx)(3) Inorganic Perovskite Solar Cells with Improved Air Thermal Stability and High Efficiency S. S. Mali; J. Patil; S. R. Rondiya; N. Y. Dzade; J. A. Steele et al. Advanced Materials. 2022-06-09. p. 2203204. DOI : 10.1002/adma.202203204. Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells V. Joseph; J. Xia; A. A. Sutanto; V. Jankauskas; C. Momblona et al. Acs Applied Materials & Interfaces. 2022-05-18. Vol. 14, num. 19, p. 22053-22060. DOI : 10.1021/acsami.2c00841. Area-Scalable Zn2SnO4 Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules X. Liu; Y. Zhang; M. Chen; C. Xiao; K. G. Brooks et al. Acs Applied Materials & Interfaces. 2022-05-10. DOI : 10.1021/acsami.1c24757. Ultraviolet Filtration Passivator for Stable High-Efficiency Perovskite Solar Cells M. Wang; G. Yan; K. Su; W. Chen; K. G. Brooks et al. Acs Applied Materials & Interfaces. 2022-05-04. Vol. 14, num. 17, p. 19459-19468. DOI : 10.1021/acsami.2c01749. Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells H. Kim; J. Lim; M. Sohail; M. K. Nazeeruddin Solar Rrl. 2022-04-30. p. 2200013. DOI : 10.1002/solr.202200013. Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability M. Abuhelaiqa; X-X. Gao; Y. Ding; B. Ding; Z. Yi et al. Sustainable Energy & Fuels. 2022-04-21. Vol. 6, num. 10, p. 2471-2477. DOI : 10.1039/d1se01721g. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules Y. Ding; B. Ding; H. Kanda; O. J. Usiobo; T. Gallet et al.. Nature Nanotechnology. 2022-04-21. DOI : 10.1038/s41565-022-01108-1. Halide exchange in the passivation of perovskite solar cells with functionalized ionic X-X. Gao; B. Ding; Y. Zhang; S. Zhang; R. C. Turnell-Ritson et al. Cell Reports Physical Science. 2022-04-20. Vol. 3, num. 4, p. 100848. DOI : 10.1016/j.xcrp.2022.100848. Employing 2D-Perovskite as an Electron Blocking Layer in Highly Efficient (18.5%) Perovskite Solar Cells with Printable Low Temperature Carbon Electrode S. Zouhair; S-M. Yoo; D. Bogachuk; J. P. Herterich; J. Lim et al. Advanced Energy Materials. 2022-04-16. p. 2200837. DOI : 10.1002/aenm.202200837. Enhancement of Piezoelectricity in Dimensionally Engineered Metal-Halide Perovskites Induced by Deep Level Defects S. Heo; D. Y. Lee; D. Lee; Y. Lee; K. Kim et al. Advanced Energy Materials. 2022-04-08. p. 2200181. DOI : 10.1002/aenm.202200181. The Chemistry of the Passivation Mechanism of Perovskite Films with Ionic Liquids S. Zhang; T. Xiao; F. F. Tirani; R. Scopelliti; M. K. Nazeeruddin et al. Inorganic Chemistry. 2022-03-28. Vol. 61, num. 12, p. 5010-5016. DOI : 10.1021/acs.inorgchem.1c03862. Deconvolution of Light-Induced Ion Migration Phenomena by Statistical Analysis of Cathodoluminescence in Lead Halide-Based Perovskites E. Shirzadi; N. Tappy; F. Ansari; M. K. Nazeeruddin; A. Hagfeldt et al. Advanced Science. 2022-03-03. p. 2103729. DOI : 10.1002/advs.202103729. High-efficiency perovskite photovoltaic modules achieved via cesium doping X. Liu; M. Chen; Y. Zhang; J. Xia; J. Yin et al. Chemical Engineering Journal. 2022-03-01. Vol. 431, p. 133713. DOI : 10.1016/j.cej.2021.133713. Molecular Engineering of Fluorene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells A. Jegorove; C. Momblona; M. Daskeviciene; A. Magomedov; R. Degutyte et al. Solar Rrl. 2022-02-24. p. 2100990. DOI : 10.1002/solr.202100990. Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance C. Yang; H. A. Atwater; M. A. Baldo; D. Baran; C. J. Barile et al. Joule. 2022-01-19. Vol. 6, num. 1, p. 8-15. DOI : 10.1016/j.joule.2021.12.004. C-60 Thin Films in Perovskite Solar Cells: Efficient or Limiting Charge Transport Layer?N. Klipfel; A. O. Alvarez; H. Kanda; A. A. Sutanto; C. Igci et al. Acs Applied Energy Materials. 2022-01-18. DOI : 10.1021/acsaem.1c03060. Investigation in Crystal Growth/Morphology and Interface Engineering of Perovskite Solar Cells by Different Deposition Methods N. I. D. Klipfel / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2022. Molecularly Engineered Functional Materials for High Performance Perovskite Solar Cells C. Igci / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2022. Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes A. Ghaderian; S. Kazim; M. K. Nazeeruddin; S. Ahmad Coordination Chemistry Reviews. 2022-01-01. Vol. 450, p. 214256. DOI : 10.1016/j.ccr.2021.214256. Composition and Interface Engineering of High Performing Perovskite Solar Cells M. A. M. E. Abuhelaiqa / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2022. Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites M. Pantaler; V. Diez-Cabanes; V. I. E. Queloz; A. Sutanto; P. A. Schouwink et al. Jacs Au. 2022. Vol. 2, num. 1, p. 136–149. DOI : 10.1021/jacsau.1c00429. Green-Chemistry-Inspired Synthesis of Cyclobutane-Based Hole-Selective Materials for Highly Efficient Perovskite Solar Cells and Modules S. Daskeviciute-Geguziene; Y. Zhang; K. Rakstys; G. Kreiza; S. B. Khan et al. Angewandte Chemie-International Edition. 2022. Vol. 61, num. 5, p. e202113207. DOI : 10.1002/anie.202113207. Molecular Engineering of Thienyl Functionalized Ullazines as Hole-Transporting Materials for Perovskite Solar Cells J. Xia; M. Cavazzini; C. Igci; C. Momblona; S. Orlandi et al. Solar Rrl. 2021-12-29. p. 2100926. DOI : 10.1002/solr.202100926. In Situ Graded Passivation via Porphyrin Derivative with Enhanced Photovoltage and Fill Factor in Perovskite Solar Cells K. Su; W. Chen; Y. Huang; G. Yang; K. G. Brooks et al. Solar Rrl. 2021-12-28. Vol. 6, num. 4, p. 2100964. DOI : 10.1002/solr.202100964. Cycloaddition of Biogas-Contained CO2 into Epoxides via Ionic Polymer Catalysis: An Experimental and Process Simulation Study X. Hu; F. D. Bobbink; A. van Muyden; M. T. Amiri; A. Bonnin et al. Industrial & Engineering Chemistry Research. 2021-12-15. Vol. 60, num. 49, p. 17942-17948. DOI : 10.1021/acs.iecr.1c03895. The emergence of concentrator photovoltaics for perovskite solar cells P. Sadhukhan; A. Roy; P. Sengupta; S. Das; T. K. Mallick et al. Applied Physics Reviews. 2021-12-01. Vol. 8, num. 4, p. 041324. DOI : 10.1063/5.0062671. Effect of illumination and applied potential on the electrochemical impedance spectra in triple cation (FA/MA/Cs) 3D and 2D/3D perovskite solar cells S. M. Abdulrahim; Z. Ahmad; M. Q. Mehmood; S. Paek; J. Bhadra et al. Journal Of Electroanalytical Chemistry. 2021-12-01. Vol. 902, p. 115800. DOI : 10.1016/j.jelechem.2021.115800. Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine M. Dessimoz; S-M. Yoo; H. Kanda; C. Igci; H. Kim et al. Journal Of Physical Chemistry Letters. 2021-11-25. Vol. 12, num. 46, p. 11323-11329. DOI : 10.1021/acs.jpclett.1c03143. Highly Planar Benzodipyrrole-Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells C. Igci; H. Kanda; S-M. Yoo; A. A. Sutanto; O. A. Syzgantseva et al. Solar Rrl. 2021-11-25. p. 2100667. DOI : 10.1002/solr.202100667. Two in One: A Dinuclear Ru(II) Complex for Deep-Red Light-Emitting Electrochemical Cells and as an Electrochemiluminescence Probe for Organophosphorus Pesticides B. Pashaei; H. Shahroosvand; M. Moharramnezhad; M. A. Kamyabi; H. Bakhshi et al. Inorganic Chemistry. 2021-11-15. Vol. 60, num. 22, p. 17040-17050. DOI : 10.1021/acs.inorgchem.1c02154. Device Performance of Emerging Photovoltaic Materials (Version 2) O. Almora; D. Baran; G. C. Bazan; C. Berger; C. Cabrera et al. Advanced Energy Materials. 2021-11-11. p. 2102526. DOI : 10.1002/aenm.202102526. Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl) imide Ion in Coevaporated p-i-n Perovskite Solar Cells N. Klipfel; H. Kanda; A. A. Sutanto; M. Mensi; C. Igci et al. Acs Applied Materials & Interfaces. 2021-11-10. Vol. 13, num. 44, p. 52450-52460. DOI : 10.1021/acsami.1c10117. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules C. Liu; Y. Yang; K. Rakstys; A. Mahata; M. Franckevicius et al.. Nature Communications. 2021-11-04. Vol. 12, num. 1, p. 6394. DOI : 10.1038/s41467-021-26754-2. Improving the Long-Term Stability of Doped Spiro-Type Hole-Transporting Materials in Planar Perovskite Solar Cells J. Urieta-Mora; I. Garcia-Benito; L. A. Illicachi; J. Calbo; J. Arago et al. Solar Rrl. 2021-10-23. p. 2100650. DOI : 10.1002/solr.202100650. Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells A. S. R. Bati; A. A. Sutanto; M. Hao; M. Batmunkh; Y. Yamauchi et al. Cell Reports Physical Science. 2021-10-20. Vol. 2, num. 10, p. 100598. DOI : 10.1016/j.xcrp.2021.100598. Enhancing Algae Biomass Production by Using Dye-Sensitized Solar Cells as Filters E. Damergi; P. Qin; S. Sharma; M. K. Nazeeruddin; C. Ludwig ACS Sustainable Chemistry & Engineering. 2021-10-20. Vol. 9, num. 43, p. 14353–14364. DOI : 10.1021/acssuschemeng.1c03780. Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices A. A. Ansari; A. K. Parchur; M. K. Nazeeruddin; M. M. Tavakoli Coordination Chemistry Reviews. 2021-10-01. Vol. 444, p. 214040. DOI : 10.1016/j.ccr.2021.214040. Branched Methoxydiphenylamine-Substituted Carbazole Derivatives for Efficient Perovskite Solar Cells: Bigger Is Not Always Better P. Luizys; J. Xia; M. Daskeviciene; K. Kantminiene; E. Kasparavicius et al. Chemistry Of Materials. 2021-09-14. Vol. 33, num. 17, p. 7017-7027. DOI : 10.1021/acs.chemmater.1c02114. A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances E-B. Kim; M. S. Akhtar; H-S. Shin; S. Ameen; M. K. Nazeeruddin Journal Of Photochemistry And Photobiology C-Photochemistry Reviews. 2021-09-01. Vol. 48, p. 100405. DOI : 10.1016/j.jphotochemrev.2021.100405. Advances in solution-processed near-infrared light-emitting diodes M. Vasilopoulou; A. Fakharuddin; F. Pelayo Garcia de Arquer; D. G. Georgiadou; H. Kim et al.. Nature Photonics. 2021-09-01. Vol. 15, num. 9, p. 656-669. DOI : 10.1038/s41566-021-00855-2. Subphthalocyanine-based electron-transport materials for perovskite solar cells J. Labella; C. Momblona; N. Klipfel; H. Kanda; S. Kinge et al. Journal Of Materials Chemistry C. 2021-08-23. Vol. 9, num. 45, p. 16298-16303. DOI : 10.1039/d1tc02600c. Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells R. Xia; Y. Xu; B. Chen; H. Kanda; M. Franckevicius et al. Journal Of Materials Chemistry A. 2021-08-19. Vol. 9, num. 38, p. 21939-21947. DOI : 10.1039/d1ta04330g. High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium(II)-Silver(I) Complex B. N. Bideh; H. Shahroosvand; M. K. Nazeeruddin Inorganic Chemistry. 2021-08-16. Vol. 60, num. 16, p. 11915-11922. DOI : 10.1021/acs.inorgchem.1c00852. Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells D. Vaitukaityte; C. Momblona; K. Rakstys; A. A. Sutanto; B. Ding et al. Chemistry Of Materials. 2021-08-10. Vol. 33, num. 15, p. 6059-6067. DOI : 10.1021/acs.chemmater.1c01486. Novel photoelectric material of perovskite-like (CH3)(3)SPbI3 nanorod arrays with high stability R. Hu; C. Ge; L. Chu; Y. Feng; S. Xiao et al. Journal of Energy Chemistry. 2021-08-01. Vol. 59, p. 581-588. DOI : 10.1016/j.jechem.2020.12.003. Fiber-Shaped Electronic Devices A. Fakharuddin; H. Li; F. Di Giacomo; T. Zhang; N. Gasparini et al. Advanced Energy Materials. 2021-07-23. p. 2101443. DOI : 10.1002/aenm.202101443. Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid X-X. Gao; B. Ding; H. Kanda; Z. Fei; W. Luo et al. Cell Reports Physical Science. 2021-07-21. Vol. 2, num. 7, p. 100475. DOI : 10.1016/j.xcrp.2021.100475. Expanded Phase Distribution in Low Average Layer-Number 2D Perovskite Films: Toward Efficient Semitransparent Solar Cells Y. Yang; C. Liu; H. Kanda; Y. Ding; H. Huang et al. Advanced Functional Materials. 2021-07-11. p. 2104868. DOI : 10.1002/adfm.202104868. Dopant‐Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules C. Liu; C. Igci; Y. Yang; O. Syzgantseva; M. A. Syzgantseva et al. Angewandte Chemie International Edition. 2021-07-05. Vol. 60, num. 37, p. 20489-20497. DOI : 10.1002/anie.202107774. Selenophene-Based Hole-Transporting Materials for Perovskite Solar Cells L. A. Illicachi; J. Urieta-Mora; C. Momblona; A. Molina-Ontoria; J. Calbo et al. Chempluschem. 2021-07-01. Vol. 86, num. 7, p. 1006-1013. DOI : 10.1002/cplu.202100208. Crystallographically Oriented Hybrid Perovskites via Thermal Vacuum Codeposition N. Klipfel; C. Momblona; H. Kanda; N. Shibayama; Y. Nakamura et al. Solar Rrl. 2021-06-26. p. 2100191. DOI : 10.1002/solr.202100191. Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core J. Santos; J. Calbo; R. Sandoval-Torrientes; I. Garcia-Benito; H. Kanda et al. Acs Applied Materials & Interfaces. 2021-06-23. Vol. 13, num. 24, p. 28214-28221. DOI : 10.1021/acsami.1c05890. Laser Processing Methods for Perovskite Solar Cells and Modules K. G. Brooks; M. K. Nazeeruddin Advanced Energy Materials. 2021-06-23. p. 2101149. DOI : 10.1002/aenm.202101149. Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Low-Cost Hole-Transporting Materials V. Joseph; A. A. Sutanto; C. Igci; O. A. Syzgantseva; V. Jankauskas et al. Small. 2021-06-08. p. 2100783. DOI : 10.1002/smll.202100783. Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells P. Caprioglio; D. S. Cruz; S. Caicedo-Davila; F. Zu; A. A. Sutanto et al. Energy & Environmental Science. 2021-06-07. Vol. 14, num. 8, p. 4508-4522. DOI : 10.1039/d1ee00869b. Observation of large Rashba spin-orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors A. R. b. M. Yusoff; A. Mahata; M. Vasilopoulou; H. Ullah; B. Hu et al. Materials Today. 2021-06-01. Vol. 46, p. 18-27. DOI : 10.1016/j.mattod.2021.01.027. Piezo-electric and -phototronic effects of perovskite 2D|3D heterostructures C. W. Jang; H. Kim; M. K. Nazeeruddin; D. H. Shin; S-H. Choi Nano Energy. 2021-06-01. Vol. 84, p. 105899. DOI : 10.1016/j.nanoen.2021.105899. Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells A. A. Ansari; M. K. Nazeeruddin; M. M. Tavakoli Coordination Chemistry Reviews. 2021-06-01. Vol. 436, p. 213805. DOI : 10.1016/j.ccr.2021.213805. Cation optimization for burn-in loss-free perovskite solar devices (vol 9, pg 5374, 2021)S. Paek; S. B. Khan; M. Franckevicius; R. Gegevicius; O. A. Syzgantseva et al. Journal Of Materials Chemistry A. 2021-05-24. Vol. 9, num. 21, p. 12878-12878. DOI : 10.1039/d1ta90102h. Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells A. A. Sutanto; V. Joseph; C. Igci; O. A. Syzgantseva; M. A. Syzgantseva et al. Chemistry Of Materials. 2021-05-11. Vol. 33, num. 9, p. 3286-3296. DOI : 10.1021/acs.chemmater.1c00335. Beyond Tolerance Factor: Using Deep Learning for Prediction Formability of ABX3 Perovskite Structures A. E. Fedorovskiy; V. I. E. Queloz; M. K. Nazeeruddin Advanced Theory and Simulations. 2021-05-01. Vol. 4, num. 5, p. 2100021. DOI : 10.1002/adts.202100021. SnO2/TiO2 Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells M. Abuhelaiqa; N. Shibayama; X-X. Gao; H. Kanda; M. K. Nazeeruddin Acs Applied Energy Materials. 2021-04-26. Vol. 4, num. 4, p. 3424-3430. DOI : 10.1021/acsaem.0c03185. An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis M. Humayun; H. Ullah; A. A. Tahir; A. R. bin Mohd Yusoff; M. A. Mat Teridi et al. Chemical Record. 2021-04-22. Vol. 21, num. 7, p. 1811-1844. DOI : 10.1002/tcr.202100067. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells A. R. b. Mohd Yusoff; M. Vasilopoulou; D. G. Georgiadou; L. C. Palilis; A. Abate et al. Energy & Environmental Science. 2021-04-09. Vol. 14, num. 5, p. 2906-2953. DOI : 10.1039/d1ee00062d. Gradient 1D/3D Perovskite Bilayer using 4-tert-Butylpyridinium Cation for Efficient and Stable Perovskite Solar Cells R. Kaneko; H. Kanda; N. Shibayama; K. Sugawa; J. Otsuki et al. Solar Rrl. 2021-03-30. p. 2000791. DOI : 10.1002/solr.202000791. Cation optimization for burn-in loss-free perovskite solar devices S. Paek; S. B. Khan; M. Franckevicius; R. Gegevicius; O. A. Syzgantseva et al. Journal of Materials Chemistry A. 2021-03-07. Vol. 9, num. 9, p. 5374-5380. DOI : 10.1039/d1ta00472g. Two-Step Thermal Annealing: An Effective Route for 15 % Efficient Quasi-2D Perovskite Solar Cells V. Romano; L. Najafi; A. A. Sutanto; G. Schileo; V. Queloz et al. Chempluschem. 2021-03-05. Vol. 86, num. 8, p. 1044-1048. DOI : 10.1002/cplu.202000777. Anion Exchange-Induced Crystal Engineering via Hot-Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells B. Ding; J. Peng; Q-Q. Chu; S. Zhao; H. Shen et al. Solar Rrl. 2021-03-01. Vol. 5, num. 3, p. 2000729. DOI : 10.1002/solr.202000729. Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells A. A. Sutanto; C. Igci; H. Kim; H. Kanda; N. Shibayama et al. Acs Applied Energy Materials. 2021-02-22. Vol. 4, num. 2, p. 1259-1268. DOI : 10.1021/acsaem.0c02472. Influence of Donor Groups on Benzoselenadiazole-Based Dopant-Free Hole Transporting Materials for High Performance Perovskite Solar Cells Abdullah; E-B. Kim; M. S. Akhtar; H-S. Shin; S. Ameen et al. Acs Applied Energy Materials. 2021-01-25. Vol. 4, num. 1, p. 312-321. DOI : 10.1021/acsaem.0c02264. The Status Quo of Rashba Phenomena in Organic-Inorganic Hybrid Perovskites S. Chakraborty; M. K. Nazeeruddin Journal Of Physical Chemistry Letters. 2021-01-14. Vol. 12, num. 1, p. 361-367. DOI : 10.1021/acs.jpclett.0c02497. Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells I. M. Abdellah; T. H. Chowdhury; J-J. Lee; A. Islam; M. K. Nazeeruddin et al. Sustainable Energy & Fuels. 2021-01-07. Vol. 5, num. 1, p. 199-211. DOI : 10.1039/d0se01323d. Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells S. Daskeviciute; C. Momblona; K. Rakstys; A. A. Sutanto; M. Daskeviciene et al. Journal Of Materials Chemistry A. 2021-01-07. Vol. 9, num. 1, p. 301-309. DOI : 10.1039/d0ta08452b. Interfacial Engineering: The Key to Boost Perovskite Solar Cells Performance and Stability A. A. Sutanto / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2021. Investigation of Lead-free perovskites for Optoelectronic Application A. Fedorovskiy / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2021. Photoinduced processes in hybrid perovskite for optoelectronics V. I. E. Queloz / M. K. Nazeeruddin; G. Grancini (Dir.) Lausanne, EPFL, 2021. Perovskite solar cell provided with an adsorbent material for adsorbing toxic materials A. Huckaba; A. A. Sutando; M. K. Nazeeruddin; W. L. Queen; D. T. Sun WO2021122851; EP3838400. Defect Suppression in Oriented 2D Perovskite Solar Cells with Efficiency over 18% via Rerouting Crystallization Pathway Y. Yang; C. Liu; O. A. Syzgantseva; M. A. Syzgantseva; S. Ma et al. Advanced Energy Materials. 2021. Vol. 11, num. 1, p. 2002966. DOI : 10.1002/aenm.202002966. Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance A. Fakharuddin; M. Vasilopoulou; A. Soultati; M. I. Haider; J. Briscoe et al. Solar Rrl. 2021. Vol. 5, num. 1, p. 2000555. DOI : 10.1002/solr.202000555. Consequence of aging at Au/HTM/perovskite interface in triple cation 3D and 2D/3D hybrid perovskite solar cells Z. Ahmad; A. Mishra; S. M. Abdulrahim; D. Taguchi; P. Sanghyun et al. Scientific Reports. 2021. Vol. 11, num. 1, p. 33. DOI : 10.1038/s41598-020-79659-3. Controlling PbI2 Stoichiometry during Synthesis to Improve the Performance of Perovskite Photovoltaics K. Tsevas; J. A. Smith; V. Kumar; C. Rodenburg; M. Fakis et al. Chemistry of Materials. 2021. Vol. 33, num. 2, p. 554-566. DOI : 10.1021/acs.chemmater.0c03517. Light Stability Enhancement of Perovskite Solar Cells Using 1H,1H,2H,2H-Perfluorooctyltriethoxysilane Passivation H. Kanda; O. J. Usiobo; C. Momblona; M. Abuhelaiqa; A. A. Sutanto et al. Solar Rrl. 2020-12-15. p. 2000650. DOI : 10.1002/solr.202000650. Device Performance of Emerging Photovoltaic Materials (Version 1) O. Almora; D. Baran; G. C. Bazan; C. Berger; C. I. Cabrera et al. Advanced Energy Materials. 2020-12-04. p. 2002774. DOI : 10.1002/aenm.202002774. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability F. Ali; C. Roldan-Carmona; M. Sohail; M. K. Nazeeruddin Advanced Energy Materials. 2020-12-01. Vol. 10, num. 48, p. 2002989. DOI : 10.1002/aenm.202002989. Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology V. Laversenne; S. Nazeeruddin; E. C. Källstig; P. Colin; C. Voize et al. Acta Neuropathologica Communications. 2020-11-23. Vol. 8, num. 1, p. 198. DOI : 10.1186/s40478-020-01069-3. Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors O. J. Usiobo; H. Kanda; P. Gratia; I. Zimmermann; T. Wirtz et al. Journal of Physical Chemistry C. 2020-10-22. Vol. 124, num. 42, p. 23230-23236. DOI : 10.1021/acs.jpcc.0c07464. An Efficient Approach to Fabricate Air-Stable Perovskite Solar Cells via Addition of a Self-Polymerizing Ionic Liquid R. Xia; X-X. Gao; Y. Zhang; N. Drigo; V. I. E. Queloz et al. Advanced Materials. 2020-10-01. Vol. 32, num. 40, p. 2003801. DOI : 10.1002/adma.202003801. Assessing mobile ions contributions to admittance spectra and current-voltage characteristics of 3D and 2D/3D perovskite solar cells A. S. Shikoh; S. Paek; A. Y. Polyakov; N. B. Smirnov; I. Shchemerov et al. Solar Energy Materials And Solar Cells. 2020-09-15. Vol. 215, p. 110670. DOI : 10.1016/j.solmat.2020.110670. Surface, Interface, and Bulk Electronic and Chemical Properties of Complete Perovskite Solar Cells: Tapered Cross-Section Photoelectron Spectroscopy, a Novel Solution C. Das; M. Wussler; T. Hellmann; T. Mayer; I. Zimmermann et al. Acs Applied Materials & Interfaces. 2020-09-09. Vol. 12, num. 36, p. 40949-40957. DOI : 10.1021/acsami.0c11484. Gradient band structure: high performance perovskite solar cells using poly(bisphenol A anhydride-co-1,3-phenylenediamine) H. Kanda; N. Shibayama; M. Abuhelaiqa; S. Paek; R. Kaneko et al. Journal Of Materials Chemistry A. 2020-09-07. Vol. 8, num. 33, p. 17113-17119. DOI : 10.1039/d0ta05496h. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process Y. Yang; C. Liu; A. Mahata; M. Li; C. Roldan-Carmona et al. Energy & Environmental Science. 2020-09-01. Vol. 13, num. 9, p. 3093-3101. DOI : 10.1039/d0ee01833c. Azatruxene-Based, Dumbbell-Shaped, Donor-pi-Bridge-Donor Hole-Transporting Materials for Perovskite Solar Cells L. A. Illicachi; J. Urieta-Mora; J. Calbo; J. Arago; C. Igci et al. Chemistry-a European Journal. 2020-08-26. Vol. 26, num. 48, p. 11039-11047. DOI : 10.1002/chem.202002115. Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers S. Paek; C. Roldan-Carmona; K. T. Cho; M. Franckevicius; H. Kim et al. Advanced Science. 2020-08-16. p. 2001014. DOI : 10.1002/advs.202001014. Reducing Amplified Spontaneous Emission Threshold in CsPbBr3 Quantum Dot Films by Controlling TiO2 Compact Layer S. M. H. Qaid; F. H. Alharbi; I. Bedja; M. K. Nazeeruddin; A. S. Aldwayyan Nanomaterials. 2020-08-15. Vol. 10, num. 8, p. 1605. DOI : 10.3390/nano10081605. Optoelectronic and Energy Level Exploration of Bismuth and Antimony-Based Materials for Lead-Free Solar Cells R. Nishikubo; H. Kanda; I. Garcia-Benito; A. Molina-Ontoria; G. Pozzi et al. Chemistry of Materials. 2020-08-11. Vol. 32, num. 15, p. 6416-6424. DOI : 10.1021/acs.chemmater.0c01503. The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA(0.5)FA(0.5)PbI(3)Perovskite Solar Cells Y. Zhang; M. Chen; Y. Zhou; W. Li; Y. Lee et al. Advanced Energy Materials. 2020-08-01. Vol. 10, num. 29, p. 2001300. DOI : 10.1002/aenm.202001300. alpha-CsPbI(3)Bilayers via One-Step Deposition for Efficient and Stable All-Inorganic Perovskite Solar Cells C. Liu; Y. Yang; O. A. Syzgantseva; Y. Ding; M. A. Syzgantseva et al. Advanced Materials. 2020-08-01. Vol. 32, num. 32, p. 2002632. DOI : 10.1002/adma.202002632. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems (vol 4, pg 528, 2020) H. Baig; H. Kanda; A. M. Asiri; M. K. Nazeeruddin; T. Mallick Sustainable Energy & Fuels. 2020-08-01. Vol. 4, num. 8, p. 4301-4302. DOI : 10.1039/d0se90048f. Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells C. Das; M. Kot; T. Hellmann; C. Wittich; E. Mankel et al. Cell Reports Physical Science. 2020-07-22. Vol. 1, num. 7, p. 100112. DOI : 10.1016/j.xcrp.2020.100112. Benzothiadiazole Aryl-amine Based Materials as Efficient Hole Carriers in Perovskite Solar Cells C. Rodriguez-Seco; M. Mendez; C. Roldan-Carmona; L. Cabau; A. M. Asiri et al. Acs Applied Materials & Interfaces. 2020-07-22. Vol. 12, num. 29, p. 32712-32718. DOI : 10.1021/acsami.0c07586. Perovskite Flash Memory with a Single-Layer Nanofloating Gate M. Vasilopoulou; B. S. Kim; H. P. Kim; W. J. da Silva; F. K. Schneider et al. Nano Letters. 2020-07-08. Vol. 20, num. 7, p. 5081-5089. DOI : 10.1021/acs.nanolett.0c01270. Molecular materials as interfacial layers and additives in perovskite solar cells M. Vasilopoulou; A. Fakharuddin; A. G. Coutsolelos; P. Falaras; P. Argitis et al. Chemical Society Reviews. 2020-07-07. Vol. 49, num. 13, p. 4496-4526. DOI : 10.1039/c9cs00733d. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot H. Kim; J. S. Kim; J-M. Heo; M. Pei; I-H. Park et al.. Nature Communications. 2020-07-06. Vol. 11, num. 1, p. 3378. DOI : 10.1038/s41467-020-17072-0. Lead Sequestration from Perovskite Solar Cells Using a Metal-Organic Framework Polymer Composite A. J. Huckaba; D. T. Sun; A. A. Sutanto; M. Mensi; Y. Zhang et al. Energy Technology. 2020-07-01. Vol. 8, num. 7, p. 2000239. DOI : 10.1002/ente.202000239. Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells L. C. Palilis; M. Vasilopoulou; A. Verykios; A. Soultati; E. Polydorou et al. Advanced Energy Materials. 2020-07-01. Vol. 10, num. 27, p. 2000910. DOI : 10.1002/aenm.202000910. Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells F. Ansari; E. Shirzadi; M. Salavati-Niasari; T. LaGrange; K. Nonomura et al. Journal Of The American Chemical Society. 2020-07-01. Vol. 142, num. 26, p. 11428-11433. DOI : 10.1021/jacs.0c01704. Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers M. C. Momblona Rincón; H. Kanda; A. A. Sutanto; M. Mensi; C. Roldán Carmona et al. Scientific Reports. 2020-06-30. Vol. 10, num. 1, p. 10640. DOI : 10.1038/s41598-020-67606-1. D-pi-A-Type Triazatruxene-Based Dopant-Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells C. Igci; S. Paek; K. Rakstys; H. Kanda; N. Shibayama et al. Solar Rrl. 2020-06-16. p. 2000173. DOI : 10.1002/solr.202000173. High-humidity processed perovskite solar cells M. F. M. Noh; N. A. Arzaee; I. N. N. Mumthas; N. A. Mohamed; S. N. F. M. Nasir et al. Journal of Materials Chemistry A. 2020-06-07. Vol. 8, num. 21, p. 10481-10518. DOI : 10.1039/d0ta01178a. Detection of voltage pulse width effect on charge accumulation in PSCs EFISHG measurement Z. Ahmad; D. Taguchi; S. Paek; A. Mishra; J. Bhadra et al. Results In Physics. 2020-06-01. Vol. 17, p. 103063. DOI : 10.1016/j.rinp.2020.103063. Quasi-quantum dot-induced stabilization of alpha-CsPbI3 perovskite for high-efficiency solar cells C. Liu; Y. Yang; X. Liu; Y. Ding; Z. Arain et al. Journal of Materials Chemistry A. 2020-05-28. Vol. 8, num. 20, p. 10226-10232. DOI : 10.1039/d0ta02807j. Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites V. I. E. Queloz; M. E. F. Bouduban; I. Garcia-Benito; A. Fedorovskiy; S. Orlandi et al. Advanced Functional Materials. 2020-05-28. p. 2000228. DOI : 10.1002/adfm.202000228. Principal Descriptors of Ionic Liquid Co-catalysts for the Electrochemical Reduction of CO2 D. V. Vasilyev; S. Shyshkanov; E. Shirzadi; S. A. Katsyuba; M. K. Nazeeruddin et al. Acs Applied Energy Materials. 2020-05-26. Vol. 3, num. 5, p. 4690-4698. DOI : 10.1021/acsaem.0c00330. Nanoscale Perovskite-Sensitized Solar Cell Revisited: Dye-Cell or Perovskite-Cell? S-M. Yoo; S-Y. Lee; E. Velilla Hernandez; M. Kim; G. Kim et al. Chemsuschem. 2020-05-22. Vol. 13, num. 10, p. 2571-2576. DOI : 10.1002/cssc.202000223. Tapered Cross-Section Photoelectron Spectroscopy of State-of-the-Art Mixed Ion Perovskite Solar Cells: Band Bending Profile in the Dark, Photopotential Profile Under Open Circuit Illumination, and Band Diagram M. Wussler; T. Mayer; C. Das; E. Mankel; T. Hellmann et al. Advanced Functional Materials. 2020-05-18. p. 1910679. DOI : 10.1002/adfm.201910679. A cost-device efficiency balanced spiro based hole transport material for perovskite solar cells L. Hajikhanmirzaei; H. Shahroosvand; B. Pashaei; G. Delle Monache; M. K. Nazeeruddin et al. Journal Of Materials Chemistry C. 2020-05-14. Vol. 8, num. 18, p. 6221-6227. DOI : 10.1039/d0tc00196a. Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application Y. Zhang; F. Fadaei Tirani; P. Pattison; K. Schenk-Joss; Z. Xiao et al. Dalton Transactions. 2020-05-14. Vol. 49, num. 18, p. 5815-5822. DOI : 10.1039/d0dt00015a. Vertically Aligned 2D/3D Pb-Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells C. Li; Y. Pan; J. Hu; S. Qiu; C. Zhang et al. Acs Energy Letters. 2020-05-08. Vol. 5, num. 5, p. 1386-1395. DOI : 10.1021/acsenergylett.0c00634. Inkjet-Printed TiO2/Fullerene Composite Films for Planar Perovskite Solar Cells A. J. Huckaba; I. Garcia-Benito; H. Kanda; N. Shibayama; E. Oveisi et al. Helvetica Chimica Acta. 2020-05-07. Vol. 103, num. 5, p. e2000044. DOI : 10.1002/hlca.202000044. Spontaneously Self-Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells J. Hu; C. Wang; S. Qiu; Y. Zhao; E. Gu et al. Advanced Energy Materials. 2020-05-01. Vol. 10, num. 17, p. 2000173. DOI : 10.1002/aenm.202000173. The Role of Goldschmidt’s Tolerance Factor in the Formation of A(2)BX(6) Double Halide Perovskites and its Optimal Range A. E. Fedorovskiy; N. A. Drigo; M. K. Nazeeruddin Small Methods. 2020-05-01. Vol. 4, num. 5, p. 1900426. DOI : 10.1002/smtd.201900426. In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces A. A. Sutanto; R. Szostak; N. Drigo; V. I. E. Queloz; P. E. Marchezi et al. Nano Letters. 2020-04-30. Vol. 20, num. 5, p. 3992–3998. DOI : 10.1021/acs.nanolett.0c01271. Carbazole-Terminated Isomeric Hole-Transporting Materials for Perovskite Solar Cells K. Rakstys; S. Paek; A. Drevilkauskaite; H. Kanda; S. Daskeviciute et al. Acs Applied Materials & Interfaces. 2020-04-29. Vol. 12, num. 17, p. 19710-19717. DOI : 10.1021/acsami.9b23495. Enhanced stability of alpha-phase FAPbI(3) perovskite solar cells by insertion of 2D (PEA)(2)PbI4 nanosheets R. Hu; Y. Zhang; S. Paek; X-X. Gao; X. Li et al. Journal of Materials Chemistry A. 2020-04-28. Vol. 8, num. 16, p. 8058-8064. DOI : 10.1039/c9ta14207j. A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation H. P. Kim; M. Vasilopoulou; H. Ullah; S. Bibi; A. E. X. Gavim et al. Nanoscale. 2020-04-14. Vol. 12, num. 14, p. 7641-7650. DOI : 10.1039/c9nr10745b. Dimension-Controlled Growth of Antimony-Based Perovskite-like Halides for Lead-Free and Semitransparent Photovoltaics Y. Yang; C. Liu; M. Cai; Y. Liao; Y. Ding et al. Acs Applied Materials & Interfaces. 2020-04-08. Vol. 12, num. 14, p. 17062-17069. DOI : 10.1021/acsami.0c00681. Effective Preparation of Nanoscale CH3NH3PbI3 Perovskite Photosensitizers for Mesoporous TiO2-Based Solar Cells by Successive Precursor Layer Adsorption and Reaction Process M. Kim; S-Y. Lee; S-M. Yoo; S. Paek; Y. Lee et al. Energy Technology. 2020-04-01. Vol. 8, num. 4, p. 1901186. DOI : 10.1002/ente.201901186. A review of CUDA optimization techniques and tools for structured grid computing M. A. Al-Mouhamed; A. H. Khan; N. Mohammad Computing. 2020-04-01. Vol. 102, num. 4, p. 977-1003. DOI : 10.1007/s00607-019-00744-1. Molecular engineering of simple carbazole-arylamine hole-transport materials for perovskite solar cells X. Liu; S. Ma; M. Mateen; P. Shi; C. Liu et al. Sustainable Energy & Fuels. 2020-04-01. Vol. 4, num. 4, p. 1875-1882. DOI : 10.1039/c9se01242g. Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor H. Kanda; N. Shibayama; A. J. Huckaba; Y. Lee; S. Paek et al. Energy & Environmental Science. 2020-04-01. Vol. 13, num. 4, p. 1222-1230. DOI : 10.1039/c9ee02028d. Self-Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells H. Kim; M. Pei; Y. Lee; A. A. Sutanto; S. Paek et al. Advanced Functional Materials. 2020-03-11. p. 1910620. DOI : 10.1002/adfm.201910620. Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device M. Hossain; B. Aissa; I. Zimmermann; M. K. Nazeeruddin; A. Belaidi Journal of Photonics for Energy. 2020-03-01. Vol. 10, num. 1, p. 015502. DOI : 10.1117/1.JPE.10.015502. Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells X-X. Gao; W. Luo; Y. Zhang; R. Hu; B. Zhang et al. Advanced Materials. 2020-03-01. Vol. 32, num. 9, p. 1905502. DOI : 10.1002/adma.201905502. Soft Template-Controlled Growth of High-Quality CsPbI3 Films for Efficient and Stable Solar Cells C. Liu; Y. Yang; X. Xia; Y. Ding; Z. Arain et al. Advanced Energy Materials. 2020-03-01. Vol. 10, num. 9, p. 1903751. DOI : 10.1002/aenm.201903751. Elucidating the Doping Mechanism in Fluorene-Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant N. H. Hemasiri; S. Kazim; L. Calio; S. Paek; M. Salado et al. Acs Applied Materials & Interfaces. 2020-02-26. Vol. 12, num. 8, p. 9395-9403. DOI : 10.1021/acsami.0c00818. Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability A. A. Sutanto; N. Drigo; V. I. E. Queloz; I. Garcia-Benito; A. R. Kirmani et al. Journal Of Materials Chemistry A. 2020-02-07. Vol. 8, num. 5, p. 2343-2348. DOI : 10.1039/c9ta12489f. Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives C. Rodriguez-Seco; M. Mendez; C. Roldan-Carmona; R. Pudi; M. Khaja Nazeeruddin et al. Angewandte Chemie-International Edition. 2020-02-07. Vol. 59, num. 13, p. 5303-5307. DOI : 10.1002/anie.201915022. Green-Emitting Lead-Free Cs4SnBr6 Zero-Dimensional Perovskite Nanocrystals with Improved Air Stability R. Chiara; Y. O. Ciftci; V. I. E. Queloz; M. K. Nazeeruddin; G. Grancini et al. Journal of Physical Chemistry Letters. 2020-02-06. Vol. 11, num. 3, p. 618-623. DOI : 10.1021/acs.jpclett.9b03685. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems H. Baig; H. Kanda; A. M. Asiri; M. K. Nazeeruddin; T. Mallick Sustainable Energy & Fuels. 2020-02-01. Vol. 4, num. 2, p. 528-537. DOI : 10.1039/c9se00550a. Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells N. Drigo; C. Roldan-Carmona; M. Franckevicius; K-H. Lin; R. Gegevicius et al. Journal Of The American Chemical Society. 2020-01-29. Vol. 142, num. 4A, p. 1792-1800. DOI : 10.1021/jacs.9b07166. Dual Connectivity-Based Mobility Management and Data Split Mechanism in 4G/5G Cellular Networks T. Mumtaz; S. Muhammad; M. I. Aslam; N. Mohammad Ieee Access. 2020. Vol. 8, p. 86495-86509. DOI : 10.1109/ACCESS.2020.2992805. Tetrasubstituted Thieno[3,2-b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells J. Urieta-Mora; I. Garcia-Benito; I. Zimmermann; J. Arago; A. Molina-Ontoria et al. Journal of Organic Chemistry. 2020. Vol. 85, num. 1, p. 224-233. DOI : 10.1021/acs.joc.9b02769. Hole transporting materials for perovskite solar cells and a simple approach for determining the performance limiting factors A. Abudulimu; R. Sandoval-Torrientes; I. Zimmermann; J. Santos; M. K. Nazeeruddin et al. Journal of Materials Chemistry A. 2020. Vol. 8, num. 3, p. 1386-1393. DOI : 10.1039/c9ta12407a. Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites I. Garcia-Benito; C. Quarti; V. I. E. Queloz; Y. J. Hofstetter; D. Becker-Koch et al. Frontiers in Chemistry. 2020. Vol. 7, p. 946. DOI : 10.3389/fchem.2019.00946. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures M. V. Khenkin; E. A. Katz; A. Abate; G. Bardizza; J. J. Berry et al.. Nature Energy. 2020-01-01. Vol. 5, num. 1, p. 35-49. DOI : 10.1038/s41560-019-0529-5. CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells V. E. Madhavan; I. Zimmermann; A. A. B. Baloch; A. Manekkathodi; A. Belaidi et al. Acs Applied Energy Materials. 2020-01-01. Vol. 3, num. 1, p. 114-121. DOI : 10.1021/acsaem.9b01692. Molecular engineering of functional materials for optoelectronic applications N. Drigo / M. K. Nazeeruddin (Dir.) Lausanne, EPFL, 2020. Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 degrees C E. Shirzadi; A. Mahata; C. R. Carmona; F. De Angelis; P. J. Dyson et al. Acs Energy Letters. 2019-12-01. Vol. 4, num. 12, p. 2989-2994. DOI : 10.1021/acsenergylett.9b01975. Getting the Right Twist: Influence of Donor-Acceptor Dihedral Angle on Exciton Kinetics and Singlet-Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter S. Weissenseel; N. A. Drigo; L. G. Kudriashova; M. Schmid; T. Morgenstern et al. Journal Of Physical Chemistry C. 2019-11-14. Vol. 123, num. 45, p. 27778-27784. DOI : 10.1021/acs.jpcc.9b08269. Template-Assisted Formation of High-Quality alpha-Phase HC(NH2)(2)PbI3 Perovskite Solar Cells P. Shi; Y. Ding; Y. Ren; X. Shi; Z. Arain et al. Advanced Science. 2019-11-01. Vol. 6, num. 21, p. 1901591. DOI : 10.1002/advs.201901591. Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping K. W. Qadir; Q. Zafar; N. A. Ebrahim; Z. Ahmad; K. Sulaiman et al. Chinese Physics B. 2019-11-01. Vol. 28, num. 11, p. 118401. DOI : 10.1088/1674-1056/ab4577. Dimensionally Engineered Perovskite Heterostructure for Photovoltaic and Optoelectronic Applications S. Heo; G. Seo; K. T. Cho; Y. Lee; S. Paek et al. Advanced Energy Materials. 2019-10-30. p. 1902470. DOI : 10.1002/aenm.201902470. Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment M. Hezam; S. M. H. Qaid; I. M. Bedja; F. Alharbi; M. K. Nazeeruddin et al. Crystals. 2019-10-26. Vol. 9, num. 11, p. 562. DOI : 10.3390/cryst9110562. A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells B. Pashaei; H. Shahroosvand; M. Ameri; E. Mohajerani; M. K. Nazeeruddin Journal of Materials Chemistry A. 2019-10-14. Vol. 7, num. 38, p. 21867-21873. DOI : 10.1039/c9ta05121j. Spiro-bifluorene core based hole transporting material with graphene oxide modified CH3NH3PbI3 for inverted planar heterojunction solar cells S. Ameen; M. S. Akhtar; M. Nazim; E-B. Kim; M. K. Nazeeruddin et al. Electrochimica Acta. 2019-10-01. Vol. 319, p. 885-894. DOI : 10.1016/j.electacta.2019.07.031. Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites M. E. F. Bouduban; V. I. E. Queloz; V. M. Caselli; K. T. Cho; A. R. Kirmani et al. The Journal of Physical Chemistry Letters. 2019-09-11. Vol. 10, p. 5713-5720. DOI : 10.1021/acs.jpclett.9b02224. Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells J. Urieta-Mora; I. Zimmermann; J. Arago; A. Molina-Ontoria; E. Orti et al. Chemistry of Materials. 2019-09-10. Vol. 31, num. 17, p. 6435-6442. DOI : 10.1021/acs.chemmater.8b04003. Multiarm and Substituent Effects on Charge Transport of Organic Hole Transport Materials K-H. Lin; A. Prlj; L. Yao; N. Drigo; H-H. Cho et al. Chemistry of Materials. 2019-09-10. Vol. 31, num. 17, p. 6605-6614. DOI : 10.1021/acs.chemmater.9b00438. Enhanced Interfacial Binding and Electron Extraction Using Boron-Doped TiO2 for Highly Efficient Hysteresis-Free Perovskite Solar Cells X. Shi; Y. Ding; S. Zhou; B. Zhang; M. Cai et al. Advanced Science. 2019-09-10. p. 1901213. DOI : 10.1002/advs.201901213. Perovskite Solar Cells Using Surface-Modified NiOx Nanoparticles as Hole Transport Materials in n-i-p Configuration R. Kaneko; H. Kanda; K. Sugawa; J. Otsuki; A. Islam et al. Solar Rrl. 2019-09-01. Vol. 3, num. 9, p. 1900172. DOI : 10.1002/solr.201900172. Perovskite Solar Cells: 18% Efficiency Using Zn(II) and Cu(II) Octakis(diarylamine)phthalocyanines as Hole-Transporting Materials K. T. Cho; M. Cavazzini; K. Rakstys; S. Orlandi; S. Paek et al. ACS Applied Energy Materials. 2019-09-01. Vol. 2, num. 9, p. 6195-6199. DOI : 10.1021/acsaem.9b00637. Inexpensive Hole-Transporting Materials Derived from Troger’s Base Afford Efficient and Stable Perovskite Solar Cells T. Braukyla; R. Xia; M. Daskeviciene; T. Malinauskas; A. Gruodis et al. Angewandte Chemie-International Edition. 2019-08-12. Vol. 58, num. 33, p. 11266-11272. DOI : 10.1002/anie.201903705. Preserving Porosity of Mesoporous Metal-Organic Frameworks through the Introduction of Polymer Guests L. Peng; S. Yang; S. Jawahery; S. M. Moosavi; A. J. Huckaba et al. Journal of the American Chemical Society. 2019-08-07. Vol. 141, num. 31, p. 12397-12405. DOI : 10.1021/jacs.9b05967. Optoelectronic Properties of Layered Perovskite Solar Cells B. Hailegnaw; S. Paek; K. T. Cho; Y. Lee; F. Onguel et al. Solar Rrl. 2019-08-01. Vol. 3, num. 8, p. 1900126. DOI : 10.1002/solr.201900126. Micellization behavior of bile salt with pluronic (F-127) and synthesis of silver nanoparticles in a mixed system M. A. Rub; N. Azum; A. M. Asiri; A. Khan; K. A. Alamry et al. Journal Of Physical Organic Chemistry. 2019-08-01. Vol. 32, num. 8, p. e3964. DOI : 10.1002/poc.3964. Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells K. Rakstys; C. Igci; M. K. Nazeeruddin Chemical Science. 2019-07-28. Vol. 10, num. 28, p. 6748-6769. DOI : 10.1039/c9sc01184f. Application of a Tetra-TPD-Type Hole-Transporting Material Fused by a Troger’s Base Core in Perovskite Solar Cells T. Braukyla; R. Xia; T. Malinauskas; M. Daskeviciene; A. Magomedov et al. Solar Rrl. 2019-07-22. Vol. 3, num. 9, p. 1900224. DOI : 10.1002/solr.201900224. Air-Stable n-i-p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material J. Tirado; M. Vasquez-Montoya; C. Roldan-Carmona; M. Ralaiarisoa; N. Koch et al. Acs Applied Energy Materials. 2019-07-01. Vol. 2, num. 7, p. 4890-4899. DOI : 10.1021/acsaem.9b00603. Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis O. Almora; P. Lopez-Varo; K. T. Cho; S. Aghazada; W. Meng et al. Solar Energy Materials and Solar Cells. 2019-06-15. Vol. 195, p. 291-298. DOI : 10.1016/j.solmat.2019.03.003. Appraisement of Crystal Expansion in CH3NH3PbI3 on Doping: Improved Photovoltaic Properties M. Salado; S. Kazim; M. K. Nazeeruddin; S. Ahmad Chemsuschem. 2019-06-07. Vol. 12, num. 11, p. 2366-2372. DOI : 10.1002/cssc.201803043. Designing Human Assisted Wireless Sensor and Robot Networks Using Probabilistic Model Checking S. Muhammad; N. Mohammad; A. Bashar; M. A. Khan Journal of Intelligent & Robotic Systems. 2019-06-01. Vol. 94, num. 3-4, p. 687-709. DOI : 10.1007/s10846-018-0901-x. Stable perovskite solar cells using tin acetylacetonate based electron transporting layers M. Abuhelaiqa; S. Paek; Y. Lee; K. T. Cho; S. Heo et al. Energy & Environmental Science. 2019-06-01. Vol. 12, num. 6, p. 1910-1917. DOI : 10.1039/c9ee00453j. Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: Application and working insights J. Tirado; C. Roldan-Carmona; F. A. Munoz-Guerrero; G. Bonilla-Arboleda; M. Ralaiarisoa et al. Applied Surface Science. 2019-06-01. Vol. 478, p. 607-614. DOI : 10.1016/j.apsusc.2019.01.289. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells M. Urbani; G. de la Torre; M. K. Nazeeruddin; T. Torres Chemical Society Reviews. 2019-05-21. Vol. 48, num. 10, p. 2738-2766. DOI : 10.1039/c9cs00059c. Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives R. Xia; Z. Fei; N. Drigo; F. D. Bobbink; Z. Huang et al. Advanced Functional Materials. 2019-05-01. Vol. 29, num. 22, p. 1902021. DOI : 10.1002/adfm.201902021. Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells J. Urieta-Mora; I. García-Benito; I. Zimmermann; J. Aragó; J. Calbo et al. Journal of Materials Chemistry C. 2019-04-18. num. 22, p. 6656-6663. DOI : 10.1039/C9TC00437H. Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer I. Zimmermann; P. Gratia; D. Martineau; G. Grancini; J-N. Audinot et al. Journal Of Materials Chemistry A. 2019-04-14. Vol. 7, num. 14, p. 8073-8077. DOI : 10.1039/c9ta00669a. ArASL: Arabic Alphabets Sign Language Dataset G. Latif; N. Mohammad; J. Alghazo; R. AlKhalaf; R. AlKhalaf Data in Brief. 2019-04-01. Vol. 23, p. 103777. DOI : 10.1016/j.dib.2019.103777. Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells Y. Zhang; G. Grancini; Z. Fei; E. Shirzadi; X. Liu et al. Nano Energy. 2019-04-01. Vol. 58, p. 105-111. DOI : 10.1016/j.nanoen.2019.01.027. Non‐Planar and Flexible Hole‐Transporting Materials from Bis‐Xanthene and Bis‐Thioxanthene Units for Perovskite Solar Cells J. Urieta‐Mora; I. García‐Benito; I. Zimmermann; J. Aragó; P. D. García‐Fernández et al. Helvetica Chimica Acta. 2019-03-08. Vol. 102, num. 4, p. e1900056. DOI : 10.1002/hlca.201900056. Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells M. Daskeviciene; S. Paek; A. Magomedov; K. T. Cho; M. Saliba et al. Journal Of Materials Chemistry C. 2019-03-07. Vol. 7, num. 9, p. 2717-2724. DOI : 10.1039/c8tc06297h. Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking Z. Ahmad; T. Noma; S. Paek; K. T. Cho; D. Taguchi et al. Organic Electronics. 2019-03-01. Vol. 66, p. 7-12. DOI : 10.1016/j.orgel.2018.12.009. Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability H. Zhang; M. K. Nazeeruddin; W. C. H. Choy Advanced Materials. 2019-02-22. Vol. 31, num. 8, p. 1805702. DOI : 10.1002/adma.201805702. Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells S. Heo; G. Seo; Y. Lee; M. Seol; S. H. Kim et al. Advanced Materials. 2019-02-22. Vol. 31, num. 8, p. 1805438. DOI : 10.1002/adma.201805438. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? A. Krishna; S. Gottis; M. K. Nazeeruddin; F. Sauvage Advanced Functional Materials. 2019-02-21. Vol. 29, num. 8, p. 1806482. DOI : 10.1002/adfm.201806482. Phthalocyanines for dye-sensitized solar cells M. Urbani; M-E. Ragoussi; M. K. Nazeeruddin; T. Torres Coordination Chemistry Reviews. 2019-02-15. Vol. 381, p. 1-64. DOI : 10.1016/j.ccr.2018.10.007. Nanoscale Lead(II) Iodide-sensitized Solar Cell S-M. Yoo; M. Kim; S-Y. Lee; T. Shin; K. Kim et al. Chemistry Letters. 2019-02-01. Vol. 48, num. 2, p. 144-147. DOI : 10.1246/cl.180883. Inkjet-Printed Mesoporous TiO2 and Perovskite Layers for High Efficiency Perovskite Solar Cells A. J. Huckaba; Y. Lee; R. Xia; S. Paek; V. C. Bassetto et al. Energy Technology. 2019-02-01. Vol. 7, num. 2, p. 317-324. DOI : 10.1002/ente.201800905. Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells A. Mishra; Z. Ahmad; I. Zimmermann; D. Martineau; R. A. Shakoor et al. Organic Electronics. 2019-02-01. Vol. 65, p. 375-380. DOI : 10.1016/j.orgel.2018.11.046. Enhanced MR Image Classification Using Hybrid Statistical and Wavelets Features G. Latif; D. N. F. A. Iskandar; J. M. Alghazo; N. Mohammad Ieee Access. 2019. Vol. 7, p. 9634-9644. DOI : 10.1109/ACCESS.2018.2888488. Formal Analysis of Human-Assisted Smart City Emergency Services N. Mohammad; S. Muhammad; A. Bashar; M. A. Khan Ieee Access. 2019. Vol. 7, p. 60376-60388. DOI : 10.1109/ACCESS.2019.2913784. Lead and HTM Free Stable Two-Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications I. Zimmermann; S. Aghazada; M. K. Nazeeruddin Angewandte Chemie-International Edition. 2019. Vol. 58, num. 4, p. 1072-1076. DOI : 10.1002/anie.201811497. In-situ cross-linkable hole transporting triazatruxene monomers for optoelectronic devicestr K. Rakstys; A. Huckaba; M. K. Nazeeruddin EP3489240. Optoelectronic device comprising guanidinium in the organic-inorganic perovskite A. Z. D. Jodlowski; C. Roldan Carmona; G. De Miguel Rojas; L. Camacho Delgado; M. K. Nazeeruddin WO2019097087; EP3486960. A viral vector based in vivo model of tauopathy to explore therapeutic strategies against tau pathology S. M. K. Nazeeruddin / B. Schneider; P. Aebischer (Dir.) Lausanne, EPFL, 2019. One-dimensional facile growth of MAPbI(3) perovskite micro-rods A. Mishra; Z. Ahmad; F. Touati; R. A. Shakoor; M. K. Nazeeruddin Rsc Advances. 2019-01-01. Vol. 9, num. 20, p. 11589-11594. DOI : 10.1039/c9ra00200f. Degradation analysis in mixed (MAPbI(3) and MAPbBr(3)) perovskite solar cells under thermal stress Z. Ahmad; A. S. Shikoh; S. Paek; M. K. Nazeeruddin; S. A. Al-Muhtaseb et al. Journal Of Materials Science-Materials In Electronics. 2019-01-01. Vol. 30, num. 2, p. 1354-1359. DOI : 10.1007/s10854-018-0403-4. Dimensional tailoring of hybrid perovskites for photovoltaics G. Grancini; M. K. Nazeeruddin. Nature Reviews Materials. 2019-01-01. Vol. 4, num. 1, p. 4-22. DOI : 10.1038/s41578-018-0065-0.