Tu, Xin
Professor
所属大学: University of Liverpool
所属学院: Department of Electrical Engineering and Electronics
个人主页:
https://www.liverpool.ac.uk/electrical-engineering-and-electronics/staff/xin-tu/
个人简介
Prof. Xin Tu received PhD in Physics from Université de Rouen (CORIA CNRS UMR 6614, France) and PhD in Thermal Engineering from Zhejiang University (China) in 2007. He was a Postdoctoral Fellow in the Centre for Surface Chemistry and Catalysis at Katholieke Universiteit Leuven (KU Leuven), Belgium, from 2008 to 2009 (with Prof. Bert Sels). In September 2009, he joined the University of Manchester (UK), working as a Research Associate in the School of Chemistry (with Prof. Christopher Whitehead). He was appointed as a Lecturer in the Department of Electrical Engineering and Electronics at the University of Liverpool in 2012 and was promoted to Senior Lecturer in 2015, Reader in 2017 and Chair in 2019. Editorships Exploration (Invited Guest Editor, 2024 - present) Plasma Processes and Polymers (Invited Guest Editor, 2024 - present)
研究领域
Prof. Tu has been working for many years on interdisciplinary research at the interface of plasma science and chemical engineering directed towards environmental clean-up, fuel production, chemical synthesis, waste treatment and nuclear decommissioning. Significant efforts have been devoted to plasma catalysis where the combination of non-thermal plasma and heterogeneous catalysis has been used as a promising and emerging low-temperature process for the removal of gas pollutants (e.g. VOCs, PAHs and NOx) in waste gas streams and the conversion of carbon and nitrogen sources into value-added fuels, chemicals and carbon materials such as CH4 activation, CO2 conversion, hydrogen production, ammonia synthesis/decomposition, tar reforming/syngas cleaning and biomass/plastics waste conversion.
近期论文
Magnetically Accelerated Gliding Arc Discharge for Enhanced Biomass Tar Decomposition: Influence of Producer Gas Components. Liu, S., Ren, L., Shi, Y., Wan, L., Mei, D., Fang, Z., & Tu, X. (2025). Magnetically Accelerated Gliding Arc Discharge for Enhanced Biomass Tar Decomposition: Influence of Producer Gas Components. Journal of the Energy Institute, 102039. doi:10.1016/j.joei.2025.102039 Tailoring Active Lattice Oxygen in CeO2-Based Oxygen Carriers for Enhanced Chemical Looping Dry Reforming of Methane. Long, Y., Gao, L., Yang, N., Cao, A., Zhang, Y., Ong, W. -L., Xin Tu , Hao Zhan Yan, J. (2025). Tailoring Active Lattice Oxygen in CeO2-Based Oxygen Carriers for Enhanced Chemical Looping Dry Reforming of Methane. Journal of the Energy Institute, 102014. doi:10.1016/j.joei.2025.102014 Co-expression of multi-genes for polynary perovskite electrocatalysts for reversible solid oxide cells.Zhang, X., He, H., Chen, Y., Yang, G., Xiao, X., Lv, H., Yongkang Xiang, Shuxiong Wang, Chang Jiang, Jianhui Li, Zhou Chen, Subiao Liu, Ning Yan, Xue Yong, Abdullah N. Alodhayb, Yuanming Pan, Ning Chen, Jinru Lin, Xin Tu, Zongping Shao . Sun, Y. (2025). Co-expression of multi-genes for polynary perovskite electrocatalysts for reversible solid oxide cells. . Nature communications, 16(1), 2868. doi:10.1038/s41467-025-58178-7 Chemical Insights Into Nitrogen Oxidation Via Surface Dielectric Barrier Discharge Plasma Driven By Different Power Supplies. Li, T., Gao, Y., Fan, J., Wang, X., Feng, Y., Qu, Z., Dingwei Gan, Jing Sun, Dingxin Liu, Xin Tu. Zhou, R. (2025). Chemical Insights Into Nitrogen Oxidation Via Surface Dielectric Barrier Discharge Plasma Driven By Different Power Supplies. Plasma Processes and Polymers, 22(3). doi:10.1002/ppap.202400257 Special Issue: Sustainable Plasma Chemistry for a Net‐Zero Economy. Tu, X., & Amin, N. A. S. (2025). Special Issue: Sustainable Plasma Chemistry for a Net‐Zero Economy. Plasma Processes and Polymers, 22(3). doi:10.1002/ppap.70007 Quantum Dot‐Enhanced Dual‐Modality Heterojunction Optoelectronic Synapse for Neuromorphic Computing. Li, J., Lei, H., Wang, K., Li, X., Chen, Z., Lam, S., . . . Zhao, C. (2025). Quantum Dot‐Enhanced Dual‐Modality Heterojunction Optoelectronic Synapse for Neuromorphic Computing. Advanced Optical Materials. doi:10.1002/adom.202403474 Pairing Electrocatalytic Reduction and Oxidation of Biomass-Derived 5-Hydroxymethylfurfural into Highly Value-Added Chemicals.Zhang, M., Zheng, Z., Zhang, X., Jiang, Z., Yong, X., Li, K., . . . Yan, K. (2025). Pairing Electrocatalytic Reduction and Oxidation of Biomass-Derived 5-Hydroxymethylfurfural into Highly Value-Added Chemicals.. JACS Au, 5(2), 937-947. doi:10.1021/jacsau.4c01135 CO2‐Assisted Controllable Synthesis of PdNi Nanoalloys for Highly Selective Hydrogenation of Biomass‐Derived 5‐Hydroxymethylfurfural. Guo, R., Zeng, Y., Lin, L., Hu, D., Lu, C., Conroy, S., . . . Yan, K. (2025). CO2‐Assisted Controllable Synthesis of PdNi Nanoalloys for Highly Selective Hydrogenation of Biomass‐Derived 5‐Hydroxymethylfurfural. Angewandte Chemie, 137(6). doi:10.1002/ange.202418234 Tandem Plasma Electrocatalysis: An Emerging Pathway for Sustainable Ammonia Production. Wang, W., Wang, Y., & Tu, X. (2024). Tandem Plasma Electrocatalysis: An Emerging Pathway for Sustainable Ammonia Production. Current Opinion in Green and Sustainable Chemistry, 100986. doi:10.1016/j.cogsc.2024.100986 Unlocking High-Throughput Plasma-Catalytic Low-Temperature Oxidation of n-Hexane over Single-Atom Ag1/MnO2 Catalysts. Ye, Z., Han, C., Yang, S., Wang, Y., Wang, K., Nikiforov, A., . . . Xie, P. (n.d.). Unlocking High-Throughput Plasma-Catalytic Low-Temperature Oxidation of n-Hexane over Single-Atom Ag1/MnO2 Catalysts. JACS Au. doi:10.1021/jacsau.4c00826 Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception.Lei, H., Cao, Y., Sun, G., Huang, P., Xue, X., Lu, B., . . . Wen, Z. (2025). Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception.. ACS nano, 19(1), 1478-1489. doi:10.1021/acsnano.4c14285 Rational Design of Indium–Palladium Intermetallic Catalysts for Selective CO2 Hydrogenation to Methanol. Lv, J., Sun, H., Liu, G., Liu, T., Zhao, G., Wang, Y., . . . Yan, Z. (2025). Rational Design of Indium–Palladium Intermetallic Catalysts for Selective CO2 Hydrogenation to Methanol. ACS Catalysis, 15(1), 23-33. doi:10.1021/acscatal.4c04670 Delamination of CuMgAl layered double hydroxides by non-thermal plasma treatment for photocatalytic degradation of Congo Red dye. Widijatmoko, S. D., Teixeira, R. I., Wang, W., Guan, S., Tu, X., Li, Y., & Leeke, G. A. (2025). Delamination of CuMgAl layered double hydroxides by non-thermal plasma treatment for photocatalytic degradation of Congo Red dye. Applied Catalysis O: Open, 198, 207021. doi:10.1016/j.apcato.2024.207021 Plasma Coal Gasification for Syngas Production. Liu, B., & Tu, X. (2025). Plasma Coal Gasification for Syngas Production. In Comprehensive Methanol Science (pp. 250-269). Elsevier. doi:10.1016/b978-0-443-15740-0.00037-9 Plasma Reactors for Syngas Production from Natural Gas. Yuan, X., Harding, J., & Tu, X. (2025). Plasma Reactors for Syngas Production from Natural Gas. In Comprehensive Methanol Science (pp. 362-381). Elsevier. doi:10.1016/b978-0-443-15740-0.00033-1 Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies. Sun, J., Qu, Z., Gao, Y., Li, T., Hong, J., Zhang, T., . . . Ostrikov, K. K. (2024). Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies. Journal of Physics D: Applied Physics, 57(50), 503002. doi:10.1088/1361-6463/ad7bc4 Innenrücktitelbild: Plasmagestützter Prozess mit Einzelatom‐Katalysatoren zur Nachhaltigen Umwandlung von Kunststoffabfällen (Angew. Chem. 50/2024).Yu, X., Rao, Z., Chen, G., Yang, Y., Yoon, S., Liu, L., . . . Weidenkaff, A. (2024). Innenrücktitelbild: Plasmagestützter Prozess mit Einzelatom‐Katalysatoren zur Nachhaltigen Umwandlung von Kunststoffabfällen (Angew. Chem. 50/2024). Angewandte Chemie, 136(50). doi:10.1002/ange.202419678 Inside Back Cover: Plasma‐Enabled Process with Single‐Atom Catalysts for Sustainable Plastic Waste Transformation (Angew. Chem. Int. Ed. 50/2024). Yu, X., Rao, Z., Chen, G., Yang, Y., Yoon, S., Liu, L., . . . Weidenkaff, A. (2024). Inside Back Cover: Plasma‐Enabled Process with Single‐Atom Catalysts for Sustainable Plastic Waste Transformation (Angew. Chem. Int. Ed. 50/2024). Angewandte Chemie International Edition, 63(50). doi:10.1002/anie.202419678 Plasma‐Enabled Process with Single‐Atom Catalysts for Sustainable Plastic Waste Transformation. Yu, X., Rao, Z., Chen, G., Yang, Y., Yoon, S., Liu, L., . . . Weidenkaff, A. (2024). Plasmagestützter Prozess mit Einzelatom‐Katalysatoren zur Nachhaltigen Umwandlung von Kunststoffabfällen. Angewandte Chemie, 136(50). doi:10.1002/ange.202404196 A kinetic study of nonthermal plasma pyrolysis of methane: Insights into hydrogen and carbon material production. Yuan, X., Sun, J., Ma, Y., Wang, Y., Liu, B., Cai, Y., . . . Tu, X. (2024). A kinetic study of nonthermal plasma pyrolysis of methane: Insights into hydrogen and carbon material production. Chemical Engineering Journal, 499, 156396. doi:10.1016/j.cej.2024.156396 Sub-millisecond pulsed laser engineering of CuOx-decorated Pd nanoparticles for enhanced catalytic CO2 hydrogenation. Cheng, M., Bhalothia, D., Huang, G. -H., Saravanan, P. K., Wu, Y., Beniwal, A., . . . Chen, T. -Y. (2024). Sub-millisecond pulsed laser engineering of CuOx-decorated Pd nanoparticles for enhanced catalytic CO2 hydrogenation. Catalysis Today, 441, 114891. doi:10.1016/j.cattod.2024.114891 CO2-assisted Controllable Synthesis of PdNi Nanoalloys for Highly Selective Hydrogenation of Biomass-derived 5-Hydroxymethylfurfural.Guo, R., Zeng, Y., Lin, L., Hu, D., Lu, C., Conroy, S., . . . Yan, K. (2024). CO2-assisted Controllable Synthesis of PdNi Nanoalloys for Highly Selective Hydrogenation of Biomass-derived 5-Hydroxymethylfurfural.. Angewandte Chemie (International ed. in English), e202418234. doi:10.1002/anie.202418234 Microwave-enhanced pyrolysis of bamboo for furfural-rich bio-oil production over WS2 catalyst. Liu, P., Jiang, Z., Zeng, Y., Wang, Y., Zeng, C., Tu, X., & Yan, K. (2024). Microwave-enhanced pyrolysis of bamboo for furfural-rich bio-oil production over WS2 catalyst. Industrial Crops and Products, 216, 118768. doi:10.1016/j.indcrop.2024.118768 Activating TiO2 through the Phase Transition-Mediated Hydrogen Spillover to Outperform Pt for Electrocatalytic pH-Universal Hydrogen Evolution.Liu, J., Guo, P., Liu, D., Yan, X., Tu, X., Pan, H., & Wu, R. (2024). Activating TiO2 through the Phase Transition-Mediated Hydrogen Spillover to Outperform Pt for Electrocatalytic pH-Universal Hydrogen Evolution.. Small (Weinheim an der Bergstrasse, Germany), 20(37), e2400783. doi:10.1002/smll.202400783 Tailored MgAl2O4 supported Ru catalyst for selective C–O bond cleavage in diphenyl ether hydrogenolysis. Zeng, Y., Zhang, S., Lin, L., Wang, N., Jiang, Z., Zeng, C., . . . Yan, K. (2024). Tailored MgAl2O4 supported Ru catalyst for selective C–O bond cleavage in diphenyl ether hydrogenolysis. Chemical Engineering Journal, 153612. doi:10.1016/j.cej.2024.153612 Tailoring performance for biomass tar reforming using magnetically assisted gliding arc discharges. Liu, S., Dai, D., Lu, Y., Chen, J., Mei, D., Fang, Z., & Tu, X. (2024). Tailoring performance for biomass tar reforming using magnetically assisted gliding arc discharges. Chemical Engineering Journal, 155364. doi:10.1016/j.cej.2024.155364 Plasma-Enabled Process with Single-Atom Catalysts for Sustainable Plastic Waste Transformation.Yu, X., Rao, Z., Chen, G., Yang, Y., Yoon, S., Liu, L., . . . Weidenkaff, A. (2024). Plasma-Enabled Process with Single-Atom Catalysts for Sustainable Plastic Waste Transformation.. Angewandte Chemie (International ed. in English), e202404196. doi:10.1002/anie.202404196 Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water–Gas Shift Reaction over Cu/γ-Al2O3 Catalysts. Shen, X., Craven, M., Xu, J., Wang, Y., Li, Z., Wang, W., . . . Tu, X. (2024). Unveiling the Mechanism of Plasma-Catalytic Low-Temperature Water–Gas Shift Reaction over Cu/γ-Al2O3 Catalysts. JACS Au. doi:10.1021/jacsau.4c00518 Engineering Ni-Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol. Wang, Y., Yang, J., Sun, Y., Ye, D., Shan, B., Tsang, S. C. E., & Tu, X. (2024). Engineering Ni-Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol. Chem. doi:10.1016/j.chempr.2024.06.022 Incorporation of atomic Fe-oxide triggers a quantum leap in the CO2 methanation performance of Ni-hydroxide. Beniwal, A., Bhalothia, D., Chen, Y. -R., Kao, J. -C., Yan, C., Hiraoka, N., . . . Chen, T. -Y. (2024). Incorporation of atomic Fe-oxide triggers a quantum leap in the CO2 methanation performance of Ni-hydroxide. Chemical Engineering Journal, 493, 152834. doi:10.1016/j.cej.2024.152834 Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation. Jiang, C., He, H., Guo, H., Zhang, X., Han, Q., Weng, Y., . . . Sun, Y. (n.d.). Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation. Nature Communications, 15(1). doi:10.1038/s41467-024-50605-5 Effect of process parameters on plasma partial oxidation approach for removal of leaking LPG. Yang, J., Liu, Z., Tu, X., Xia, D., Zhang, C., Yang, Y., . . . Wan, J. (2024). Effect of process parameters on plasma partial oxidation approach for removal of leaking LPG. Process Safety and Environmental Protection. doi:10.1016/j.psep.2024.05.007 Oxygen Vacancy-Enriched Amorphous Transition Metal Ternary Oxides toward Highly Efficient Oxygen Evolution Reaction. Bai, Q., Liu, D., Yan, X., Guo, P., Ding, X., Xiang, K., . . . Wu, R. (2024). Oxygen Vacancy-Enriched Amorphous Transition Metal Ternary Oxides toward Highly Efficient Oxygen Evolution Reaction. ACS Materials Letters, 6(7), 2948-2956. doi:10.1021/acsmaterialslett.4c00716 Neuromorphic Computing-Assisted Triboelectric Capacitive-Coupled Tactile Sensor Array for Wireless Mixed Reality Interaction.Xie, X., Wang, Q., Zhao, C., Sun, Q., Gu, H., Li, J., . . . Wang, Z. L. (2024). Neuromorphic Computing-Assisted Triboelectric Capacitive-Coupled Tactile Sensor Array for Wireless Mixed Reality Interaction.. ACS nano. doi:10.1021/acsnano.4c03554 A comprehensive review of carbon capture science and technologies. Wu, C., Huang, Q., Xu, Z., Sipra, A. T., Gao, N., Vandenberghe, L. P. D. S., . . . Zhou, H. (2024). A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology, 11, 100178. doi:10.1016/j.ccst.2023.100178 Plasma catalysis for a net-zero economy (ISPCEM 2022). Tu, X., Liu, C., Bogaerts, A., Nozaki, T., Li, O. L., & Gómez-Ramírez, A. (2024). Plasma catalysis for a net-zero economy (ISPCEM 2022). Catalysis Today, 435, 114730. doi:10.1016/j.cattod.2024.114730 Revisiting the application of molecular probe diagnostics on quantifying aqueous OH radicals in plasma–liquid systems. Tang, Q., Zhang, M., Wu, B., Wang, X., Tu, X., Ostrikov, K. K., . . . Chen, Q. (n.d.). Revisiting the application of molecular probe diagnostics on quantifying aqueous OH radicals in plasma–liquid systems. Plasma Processes and Polymers. doi:10.1002/ppap.202300229 Improving Molecule-Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2 Hydrogenation.Cai, Y., Michiels, R., De Luca, F., Neyts, E., Tu, X., Bogaerts, A., & Gerrits, N. (2024). Improving Molecule-Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2 Hydrogenation.. The journal of physical chemistry. C, Nanomaterials and interfaces, 128(21), 8611-8620. doi:10.1021/acs.jpcc.4c01110 Plasma Chemical Looping: Unlocking High-Efficiency CO2 Conversion to Clean CO at Mild Temperatures. Long, Y., Wang, X., Zhang, H., Wang, K., Ong, W. -L., Bogaerts, A., . . . Zhang, H. (2024). Plasma Chemical Looping: Unlocking High-Efficiency CO2 Conversion to Clean CO at Mild Temperatures. JACS Au. doi:10.1021/jacsau.4c00153 Unveiling the Mechanism of Plasma-Catalyzed Oxidation of Methane to C2+ Oxygenates over Cu/UiO-66-NH2. Qi, C., Bi, Y., Wang, Y., Yu, H., Tian, Y., Zong, P., . . . Wu, W. (2024). Unveiling the Mechanism of Plasma-Catalyzed Oxidation of Methane to C2+ Oxygenates over Cu/UiO-66-NH2. ACS Catalysis, 7707-7716. doi:10.1021/acscatal.4c00261 Machine learning-driven optimization of plasma-catalytic dry reforming of methane. Cai, Y., Mei, D., Chen, Y., Bogaerts, A., & Tu, X. (2024). Machine learning-driven optimization of plasma-catalytic dry reforming of methane. Journal of Energy Chemistry. doi:10.1016/j.jechem.2024.04.022 Unlocking the Potential of Cu/TiCT MXene Catalyst in Plasma Catalytic CO2 Hydrogenation. Bo, Z., Cao, M., Wang, Y., Yan, J., Cen, K., & Tu, X. (2024). Unlocking the Potential of Cu/TiCT MXene Catalyst in Plasma Catalytic CO2 Hydrogenation. Journal of the Energy Institute, 101648. doi:10.1016/j.joei.2024.101648 Plasma-Assisted Sustainable Nitrogen-to-Ammonia Fixation: Mixed-phase, Synergistic Processes and Mechanisms.Qu, Z., Zhou, R., Sun, J., Gao, Y., Li, Z., Zhang, T., . . . Ostrikov, K. K. (2024). Plasma-Assisted Sustainable Nitrogen-to-Ammonia Fixation: Mixed-phase, Synergistic Processes and Mechanisms.. ChemSusChem, 17(6), e202300783. doi:10.1002/cssc.202300783 Enhancing plasma-catalytic toluene oxidation: Unraveling the role of Lewis-acid sites on δ-MnO2. Bo, Z., Cao, M., Zhang, H., Wang, Y., Yan, J., Cen, K., . . . Tu, X. (2024). Enhancing plasma-catalytic toluene oxidation: Unraveling the role of Lewis-acid sites on δ-MnO2. Chemical Engineering Journal, 481, 148399. doi:10.1016/j.cej.2023.148399 Revisiting dispersion and reactivity of active sites via a restricted random distribution model over supported vanadia catalysts for NO reduction. Xue, J., Zhang, Y., Hu, W., Chen, Y., Yang, Z., Ran, J., . . . Du, X. (2024). Revisiting dispersion and reactivity of active sites via a restricted random distribution model over supported vanadia catalysts for NO reduction. FUEL, 357. doi:10.1016/j.fuel.2023.129674 Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction. Bai, Q., Yan, X., Liu, D., Xiang, K., Tu, X., Guo, Y., & Wu, R. (2024). Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 972, 172730. doi:10.1016/j.jallcom.2023.172730 Machine learning-driven optimization of Ni-based catalysts for catalytic steam reforming of biomass tar. Wang, N., He, H., Wang, Y., Xu, B., Harding, J., Yin, X., & Tu, X. (2024). Machine learning-driven optimization of Ni-based catalysts for catalytic steam reforming of biomass tar. Energy Conversion and Management, 300, 117879. doi:10.1016/j.enconman.2023.117879 Morphology and size effect of ceria on methanol oxidation in non-thermal plasma. Li, H., Wang, X., Yi, H., Shi, X., Mao, M., Zhang, Y., . . . Wu, J. (2024). Morphology and size effect of ceria on methanol oxidation in non-thermal plasma. Catalysis Today, 426, 114398. doi:10.1016/j.cattod.2023.114398 Experimental study on effects of gas flow rate on soot characteristics in diffusion flames coupled with plasma. Qi, D., Chen, M., Tu, X., & Liu, D. (2023). Experimental study on effects of gas flow rate on soot characteristics in diffusion flames coupled with plasma. Science China Technological Sciences. doi:10.1007/s11431-023-2470-0 Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: Understanding the influence of plasma on volatiles. Xiao, H., Li, S., Shi, Z., Cui, C., Xia, S., Chen, Y., . . . Chen, H. (2023). Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: Understanding the influence of plasma on volatiles. APPLIED ENERGY, 351. doi:10.1016/j.apenergy.2023.121848 Synaptic transistor with multiple biological functions based on metal-organic frameworks combined with the LIF model of a spiking neural network to recognize temporal information. Wang, Q., Zhao, C., Sun, Y., Xu, R., Li, C., Wang, C., . . . Wen, Z. (2023). Synaptic transistor with multiple biological functions based on metal-organic frameworks combined with the LIF model of a spiking neural network to recognize temporal information. MICROSYSTEMS & NANOENGINEERING, 9(1). doi:10.1038/s41378-023-00566-4 Plasma-Enabled Selective Synthesis of Biobased Phenolics from Lignin-Derived Feedstock. Ma, Y., Conroy, S., Shaw, A., Alliati, I. M., Sels, B. F., Zhang, X., & Tu, X. (2023). Plasma-Enabled Selective Synthesis of Biobased Phenolics from Lignin-Derived Feedstock.. JACS Au, 3(11), 3101-3110. doi:10.1021/jacsau.3c00468 Unraveling Temperature-Dependent Plasma-Catalyzed CO2 Hydrogenation. Zeng, Y., Chen, G., Liu, B., Zhang, H., & Tu, X. (n.d.). Unraveling Temperature-Dependent Plasma-Catalyzed CO2 Hydrogenation. Industrial & Engineering Chemistry Research. doi:10.1021/acs.iecr.3c02827 Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database. Salden, A., Budde, M., Garcia-Soto, C. A., Biondo, O., Barauna, J., Faedda, M., . . . Guaitella, O. (2023). Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database. Journal of Energy Chemistry, 86, 318-342. doi:10.1016/j.jechem.2023.07.022 Plasma-catalytic synthesis of ammonia over Ru/BaTiO3-based bimetallic catalysts: Synergistic effect from dual-metal active sites. Liu, J., Zhu, X., Jiang, S., Zhang, H., Hong, Y., Chen, G., & Tu, X. (2023). Plasma-catalytic synthesis of ammonia over Ru/BaTiO3-based bimetallic catalysts: Synergistic effect from dual-metal active sites. FUEL PROCESSING TECHNOLOGY, 250. doi:10.1016/j.fuproc.2023.107851 Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–Fe O3− pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Yu, X., Chen, G., Widenmeyer, M., Kinski, I., Liu, X., Kunz, U., . . . Weidenkaff, A. (2023). Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–Fe O3− pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 334, 122838. doi:10.1016/j.apcatb.2023.122838 Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO2.Rao, Z., Wang, K., Cao, Y., Feng, Y., Huang, Z., Chen, Y., . . . Zhou, Y. (2023). Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO2.. Journal of the American Chemical Society. doi:10.1021/jacs.3c07077 Methane up-carbonizing: A way towards clean hydrogen energy? Chen, G., Yu, X., Ostrikov, K. K., Liu, B., Harding, J., Homm, G., . . . Weidenkaff, A. (2023). Methane up-carbonizing: A way towards clean hydrogen energy?. Chemical Engineering Journal, 146335. doi:10.1016/j.cej.2023.146335 Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO2 support for selective nitrate electroreduction to ammonia. Wu, H., Guo, H., Zhang, F., Yang, P., Liu, J., Yang, Y., . . . Zhou, Y. (n.d.). Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO2 support for selective nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 11(41), 22466-22477. doi:10.1039/d3ta04155g Bi-reforming of methane in a carbon deposit-free plasmatron with high operational adaptability. Wang, K., Zhang, H., J, A., Rao, L., Lin, X., Wan, J., . . . Huang, Q. (2023). Bi-reforming of methane in a carbon deposit-free plasmatron with high operational adaptability. Fuel Processing Technology, 248, 107826. doi:10.1016/j.fuproc.2023.107826 Improving Molecule-Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2 Hydrogenation. DOI. 10.26434/CHEMRXIV-2023-JBX2F Dynamic residual deep learning with photoelectrically regulated neurons for immunological classification. Wang, Q., Duan, S., Qin, J., Sun, Y., Wei, S., Song, P., . . . Zhao, C. (2023). Dynamic residual deep learning with photoelectrically regulated neurons for immunological classification. CELL REPORTS PHYSICAL SCIENCE, 4(7). doi:10.1016/j.xcrp.2023.101481 Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: Understanding roles of temperature and catalyst. Xu, Z., Gao, N., Ma, Y., Wang, W., Quan, C., Tu, X., & Miskolczi, N. (2023). Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: Understanding roles of temperature and catalyst. ENERGY CONVERSION AND MANAGEMENT, 288. doi:10.1016/j.enconman.2023.117159 Catalytic ignition of CO over CuCeZr based catalysts: New insights into the support effects and reaction pathways. Kang, R., Zhang, Z., Bin, F., Wei, X., Li, Y., Chen, G., & Tu, X. (2023). Catalytic ignition of CO over CuCeZr based catalysts: New insights into the support effects and reaction pathways. APPLIED CATALYSIS B-ENVIRONMENTAL, 327. doi:10.1016/j.apcatb.2023.122435 Direct conversion of CH4 and CO2 to alcohols using plasma catalysis over Cu/Al(OH)3 catalysts. Wang, L., Wang, Y., Fan, L., Xu, H., Liu, B., Zhang, J., . . . Tu, X. (2023). Direct conversion of CH4 and CO2 to alcohols using plasma catalysis over Cu/Al(OH)3 catalysts. Chemical Engineering Journal, 466, 143347. doi:10.1016/j.cej.2023.143347 Enhanced NH3 Synthesis from Air in a Plasma Tandem- Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2. Zheng, J., Zhang, H., Lv, J., Zhang, M., Wan, J., Gerrits, N., . . . Li, X. (2023). Enhanced NH3 Synthesis from Air in a Plasma Tandem- Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2. JACS AU, 3(5), 1328-1336. doi:10.1021/jacsau.3c00087 Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd–Ce Catalysts under Zeolite Confinement. Chen, X., Shi, X., Chen, P., Liu, B., Liu, M., Chen, L., . . . Wu, J. (2023). Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd–Ce Catalysts under Zeolite Confinement. ACS Environmental Au. doi:10.1021/acsenvironau.3c00008 Plasma-enabled catalytic steam reforming of toluene as a biomass tar surrogate: Understanding the synergistic effect of plasma catalysis. Xu, B., Xie, J., Wang, N., Huang, Y., Liu, H., Yin, X., . . . Tu, X. (2023). Plasma-enabled catalytic steam reforming of toluene as a biomass tar surrogate: Understanding the synergistic effect of plasma catalysis. CHEMICAL ENGINEERING JOURNAL, 464. doi:10.1016/j.cej.2023.142696 Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare.Lei, H., Ji, H., Liu, X., Lu, B., Xie, L., Lim, E. G., . . . Wen, Z. (2023). Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare.. Nano-micro letters, 15(1), 109. doi:10.1007/s40820-023-01081-x Plasma-catalytic reforming of biogas into syngas over Ni-based bimetallic catalysts. Mei, D., Shen, X., Liu, S., Zhou, R., Yuan, X., Rao, Z., . . . Tu, X. (2023). Plasma-catalytic reforming of biogas into syngas over Ni-based bimetallic catalysts. CHEMICAL ENGINEERING JOURNAL, 462. doi:10.1016/j.cej.2023.142044 Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction. Guo, H., Yang, Y., Yang, G., Cao, X., Yan, N., Li, Z., . . . Sun, Y. (2023). Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction. ACS CATALYSIS, 13(7), 5007-5019. doi:10.1021/acscatal.2c05684 Insights into the Role of Nanorod-Shaped MnO2 and CeO2 in a Plasma Catalysis System for Methanol Oxidation. Zhang, G., Chen, G., Huang, H., Qin, Y., Fu, M., Tu, X., . . . Wu, J. (n.d.). Insights into the Role of Nanorod-Shaped MnO2 and CeO2 in a Plasma Catalysis System for Methanol Oxidation. Nanomaterials, 13(6), 1026. doi:10.3390/nano13061026 Plasma-Catalytic CO2 Reforming of Toluene over Hydrotalcite- Derived NiFe/(Mg, Al)OX Catalysts. Liu, L., Dai, J., Das, S., Wang, Y., Yu, H., Xi, S., . . . Tu, X. (2023). Plasma-Catalytic CO2 Reforming of Toluene over Hydrotalcite- Derived NiFe/(Mg, Al)OX Catalysts. JACS AU, 3(3), 785-800. doi:10.1021/jacsau.2c00603 Effective interfacial energy band engineering strategy toward high-performance triboelectric nanogenerator. Xie, X., Fang, Y., Lu, C., Tao, Y., Yin, L., Zhang, Y., . . . Wen, Z. (2023). Effective interfacial energy band engineering strategy toward high-performance triboelectric nanogenerator. Chemical Engineering Journal, 452, 139469. doi:10.1016/j.cej.2022.139469 Soot characteristics from diffusion flames coupled with plasma. Qi, D., Ying, Y., Mei, D., Tu, X., & Liu, D. (2023). Soot characteristics from diffusion flames coupled with plasma. Fuel, 332, 126126. doi:10.1016/j.fuel.2022.126126 Chapter 14 Plasma technology for syngas production. Wang, Y., Wang, N., Harding, J., Chen, G., & Tu, X. (2023). Chapter 14 Plasma technology for syngas production. In Advances in Synthesis Gas : Methods, Technologies and Applications (pp. 327-359). Elsevier. doi:10.1016/b978-0-323-91871-8.00014-3 Chapter 15 Plasma technology for syngas cleaning. Mathieu, S., Harding, J., & Tu, X. (2023). Chapter 15 Plasma technology for syngas cleaning. In Advances in Synthesis Gas : Methods, Technologies and Applications (pp. 389-417). Elsevier. doi:10.1016/b978-0-323-91877-0.00017-9 Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: Insight into the active metals of gamma-Al2O3 supported catalysts. Mei, D., Sun, M., Liu, S., Zhang, P., Fang, Z., & Tu, X. (2023). Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: Insight into the active metals of γ-Al2O3 supported catalysts. JOURNAL OF CO2 UTILIZATION, 67. doi:10.1016/j.jcou.2022.102307 Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions. Wang, Y., Chen, Y., Harding, J., He, H., Bogaerts, A., & Tu, X. (2022). Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions. Chemical Engineering Journal, 137860. doi:10.1016/j.cej.2022.137860 Artificial synapses enabled neuromorphic computing: From blueprints to reality. Li, J., Shen, Z., Cao, Y., Tu, X., Zhao, C., Liu, Y., & Wen, Z. (2022). Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy, 103, 107744. doi:10.1016/j.nanoen.2022.107744 Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion. Yang, Y., Wang, S., Tu, X., Hu, Z., Zhu, Y., Guo, H., . . . Sun, Y. (2022). Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion.. Exploration (Beijing, China), 2(6), 20220060. doi:10.1002/exp.20220060 Boosting Electrocatalytic Nitrate-to-Ammonia Conversion via Plasma Enhanced CuCo Alloy–Substrate Interaction. Wu, A., Zhou, Y., Lv, J., Zhang, D., Peng, Y., Ye, Q., . . . Li, X. (2022). Boosting Electrocatalytic Nitrate-to-Ammonia Conversion via Plasma Enhanced CuCo Alloy–Substrate Interaction. ACS Sustainable Chemistry & Engineering, 10(44), 14539-14548. doi:10.1021/acssuschemeng.2c04249 Fast and catalyst-free conversion of protein-rich biomass using plasma electrolysis. Xi, D., Lv, X., Huang, Z., Du, X., Zhou, R., Zhang, X., . . . Tu, X. (2022). Fast and catalyst-free conversion of protein-rich biomass using plasma electrolysis. Journal of the Energy Institute. doi:10.1016/j.joei.2022.11.002 Optimization of SnPd Shell Configuration to Boost ORR Performance of Pt-Clusters Decorated CoOx@SnPd Core-Shell Nanocatalyst. Cheng, M., Bhalothia, D., Yeh, W., Beniwal, A., Yan, C., Wang, K. -W., . . . Chen, T. -Y. (n.d.). Optimization of SnPd Shell Configuration to Boost ORR Performance of Pt-Clusters Decorated CoOx@SnPd Core-Shell Nanocatalyst. Catalysts, 12(11), 1411. doi:10.3390/catal12111411 Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. Wang, Y., Fan, L., Xu, H., Du, X., Xiao, H., Qian, J., . . . Wang, L. (2022). Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL, 315. doi:10.1016/j.apcatb.2022.121583 A review of the advances in catalyst modification using nonthermal plasma: Process, Mechanism and Applications. Ye, Z., Zhao, L., Nikiforov, A., Giraudon, J. -M., Chen, Y., Wang, J., & Tu, X. (2022). A review of the advances in catalyst modification using nonthermal plasma: Process, Mechanism and Applications. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 308. doi:10.1016/j.cis.2022.102755 Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol. Yang, Y., Pan, Y. -X., Tu, X., & Liu, C. -J. (2022). Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol. NANO ENERGY, 101. doi:10.1016/j.nanoen.2022.107613 Plasma-catalytic biogas reforming for hydrogen production over K-promoted Ni/Al2O3 catalysts: Effect of K-loading. Zeng, Y., Chen, G., Wang, J., Zhou, R., Sun, Y., Weidenkaff, A., . . . Tu, X. (2022). Plasma-catalytic biogas reforming for hydrogen production over K-promoted Ni/Al2O3 catalysts: Effect of K-loading. JOURNAL OF THE ENERGY INSTITUTE, 104, 12-21. doi:10.1016/j.joei.2022.06.008 Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma. Qi, D., Yang, K., Zhao, X., Mei, D., Ying, Y., Xu, L., . . . Liu, D. (2022). Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma. Energy, 124555. doi:10.1016/j.energy.2022.124555 Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process. Wang, W., Ma, Y., Chen, G., Quan, C., Yanik, J., Gao, N., & Tu, X. (2022). Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process. Fuel Processing Technology, 234, 107333. doi:10.1016/j.fuproc.2022.107333 Plasma-catalytic ammonia synthesis over BaTiO3 supported metal catalysts: Process optimization using response surface methodology. Liu, J., Zhu, X., Zhou, C., Du, J., Gan, Y., Chen, G., & Tu, X. (2022). Plasma-catalytic ammonia synthesis over BaTiO3 supported metal catalysts: Process optimization using response surface methodology. VACUUM, 203. doi:10.1016/j.vacuum.2022.111205 Plasma-Catalytic CO2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. Sun, Y., Wu, J., Wang, Y., Li, J., Wang, N., Harding, J., . . . Tu, X. (2022). Plasma-Catalytic CO2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. JACS AU. doi:10.1021/jacsau.2c00028 CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma. Mei, D., Zhang, P., Duan, G., Liu, S., Zhou, Y., Fang, Z., & Tu, X. (2022). CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma. JOURNAL OF CO2 UTILIZATION, 62. doi:10.1016/j.jcou.2022.102073