Whittingham, Stanley
Distinguished Professor
个人简介
B. A., 1964, Chemistry, Oxford University, UK M. A., D. Phil., 1968, Solid State Chemistry, Oxford University, UK Research Associate, 1968-1972, Materials S&E, Stanford University, CA
研究领域
Dr. Whittingham's research interests are in the synthesis and characterization of novel transition metal oxides that might find application in energy storage, conversion and separations or as sensors. His research group emphasizes novel approaches to synthesis, mostly around ambient temperature, that often allow structures to be formed that are not stable under the high temperature conditions often used for preparing oxides. Such materials then often have fairly open or layered structures that can readily undergo redox and other chemical reactions with structure retention. A wide variety of characterization tools are used to determine the structure, including x-ray diffraction, NMR, SEM/TEM, TGA, FTIR and ionic conductivity. The multidisciplinary approach used allows students (both undergrad.and graduate) to become familiar with the scientific approaches used by other disciplines, and the skills learnt in research are then transferred to undergraduate courses (with NSF $). Major participant with NSF funding in introducing Materials into the Introductory Chemistry Curriculum (with U. Wisconsin); extendingprior NSF funded effort at Binghamton placing more materials and relevance into the chemistry curriculum.
近期论文
M. S. Whittingham : Lithium Batteries and Cathodes, Chemical Rev., 104: 4271-4301 (2004) H. Zhou, S. Upreti, N. A. Chernova, G. Hautier, G. Ceder, and M. S. Whittingham "Iron and Manganese Pyrophosphates as Cathodes for Lithium Ion Batteries", Chemistry of Materials, 2011, 23:293-300. M. S. Whittingham, "Materials Challenges Facing Electrical Energy Storage", Mater. Res. Soc. Bulletin, 2008, 33: 411-420 M. S. Whittingham, "History, Evolution, and Future Status of Energy Storage", IEEE Proc., 2012, 100: 1518-1534. Z. Li, N. A. Chernova, M. Roppolo, S. Upreti, C. Petersburg, F. M. Alamgir, and M. S. Whittingham, "Comparative study of the capacity and rate capability of LiNi Mn Co O (y =0.5, 0.45, 0.4, 0.33)", y y 1-2y 2 J. Electrochem. Soc., 2011, 158: A516-A522. C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and A. C. Dillon "Extremely Durable High-Rate Capability of a LiNi0.4Mn0.4Co0.2O2 Cathode Enabled by Single–Wall Carbon Nanotubes", Advanced Energy Materials, 2011, 1: 58-62. F. Omenya, N. A. Chernova, S. Upreti, P. Y. Zavalij, K-W. Nam, X-Q. Yang, and M. S. Whittingham, "Can Vanadium Be Substituted into LiFePO ?", Chem. Mater., 2011, 23: 4733-4740. S. Upreti, N. A. Chernova, J. Xiao, J. K. Miller, O. V. Yakubovich, J. Cabana, C. P. Grey, V. L. Chevrier, G. Ceder, J. L. Musfeldt, and M. S. Whittingham, "Crystal Structure, Physical Properties, and Electrochemistry of Copper Substituted LiFePO4 Single Crystals", Chem. Mater., 2012, 24: 166-176. W. Zhou, S. Upreti and M. S. Whittingham "Electrochemical performance of Al-Si-Graphite composite as anode for lithium-ion batteries", Electrochemistry Communications, 2011, 13: 158-161.
R. Zhang, S. Upreti and M. S. Whittingham, "Tin-Iron Based Nano-Materials as Anodes for Li-Ion Batteries", J. Electrochem. Soc., 2011, 158: A1498-A1504