Gong, Jian Ping
Professor
所属大学: Hokkaido University
所属学院: Faculty of Advanced Life Science
个人主页:
https://life.sci.hokudai.ac.jp/en/fa/staff/gong-jian-ping
个人简介
Jian Ping Gong obtained her bachelor's degree in electronic physics from Zhejiang University, China, and received her Master's degree in polymer science from Ibaraki University, Japan. She studied high Tc superconductors at the Tokyo Institute of Technology for two years where she earned her Doctor of Engineering. She has been working on polymer science since 1993 at Hokkaido University, and received her Doctorate of Science in polymer sciences. She has received various scientific awards, including the MEXT Commendation for Science and Technology in 2019, the DSM Materials Sciences Award 2014, the Chemical Society of Japan’s Award for Creative Work in 2011, and The Award of the Society of Polymer Science, Japan in 2006. She also serves on the editorial and advisory boards of the Biointerphases, Asia Materials, Soft Matter, and Mechanics of Soft Materials. She served as Director of Global Station for Soft Matter, GI-Core from April, 2016 until March, 2019 and has been serving as PI for WPI-ICReDD since October, 2018.
研究领域
Besides bones, tooth, and nails, the human body consists of soft tissues. The dynamic functions of the human body are mostly realized by these soft tissues. For example, muscles generate force to move bones, tendons transfer force from muscle to bone, and cartilage absorbs the shock and reduces the friction of bone motion. These soft tissues, consisting of biopolymers (DNA, proteins, polysaccharides) and 30-80% water, belong to a category of substances called Soft & Wet Matter. The mechanisms of why soft tissues are able to exhibit such excellent functions are not understood yet, but it is considered to originate from their soft & wet nature. A hydrogel, consisting of cross-linked macromolecules and water, is also soft & wet matter. My research goal is to unravel the secrets of soft tissues, creating hydrogels with soft tissue-like functions, and applying these hydrogels as artificial soft tissues, such as cartilage, tendon, and muscles. Our strategy is as follows: 1) design the hydrogel by extracting the structural essences of the soft tissue using physical principles; 2) synthesize hydrogels with soft tissue-like structure using chemical approaches; and 3) investigate the functions of hydrogels thus obtained and understand the mechanisms of soft tissues by comparing these hydrogels with real soft-tissues.
近期论文
T. Nonoyama, Y. W. Lee, K. Ota, K. Fujioka, W. Hong, J. P. Gong, “Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins”, Advanced Materials, 32(4), 1905878 (2020). H. Fan, J. Wang, Z. Tao, J. Huang, P. Rao, T. Kurokawa, J. P. Gong, “Adjacent Cationic-Aromatic Sequences Yield Strong Electrostatic Adhesion of Hydrogels in Seawater”, Nature Communications, 10, 5127 (2019). H. Guo, T. Nakajima, D. Hourdet, A. Marcellan, C. Creton, W. Hong, T. Kurokawa, J. P. Gong, “Hydrophobic Hydrogels with Fruit-like Structure and Functions”, Advanced Materials, 31(25), 1900702 (2019). T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J. P. Gong, “ Mechanoresponsive Self-growing Hydrogels Inspired by Muscle Training”, Science, 363(6426), 504-508 (2019). P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, J. P. Gong, “Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multi-Scale Design”, Advanced Materials, 30(32), 1801884 (2018). T. I. Mredha, T. Nonoyama, T. Nakajima, Y. Z. Guo, T. Kurokawa, J. P. Gong, “A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures”, Advanced Materials, 30(9), 1704937 (2018).