McEuen, Paul L. 照片

McEuen, Paul L.

Professor

所属大学: Cornell University

所属学院: Department of Physics

邮箱:
plm23@cornell.edu

个人主页:
https://mceuengroup.lassp.cornell.edu/

个人简介

Educational Background John A. Newman Emeritus Professor of Physical Science, Cornell University, 2023-present John A. Newman Professor of Physical Science, Cornell University, 2001-2023 Associate Professor, Physics, University of California, Berkeley, 1996-2000 Assistant Professor, Physics, University of California, Berkeley, 1992-1996 Postdoctoral Researcher, Massachusetts Institute of Technology, 1990-1991 Ph.D. in Applied Physics, Yale University, 1991 B.S. in Engineering Physics, University of Oklahoma, 1985

研究领域

Fundamentals of nanostructures How are small things different? Our group explores the fundamental properties of zero, one, and two-dimensional materials using a combination of electronic, optical, mechanical and imaging techniques (sometimes we have to invent the technique.) Recent work includes the first measurement of the valley Hall effect in 2D semiconductors and tunable excitons in bilayer graphene. Atomically-thin origami for metamaterials and micromachines Origami and Kirigami provide a general approach to designing metamaterials and micromachines. Our group pioneered the use of 2D materials for atomically thin paper arts, and current work focuses on active, self-folding systems. For example, a nanometer-thick layer of glass on a graphene sheet makes a bimorph that folds in response to a change in pH. Microscale smart phones and optobots What if we could make wearable electronics for cells? Or injectable systems that could swim to a location, record information, and communicate it back to the macroworld? Our group is working to push the internet of things to the cellular level using systems with integrated electronics, optics, and mechanical actuation. The current platform integrates LEDs and photovoltaics with CMOS chips/graphene transistors and ultrathin bimorphs to create cell-sized sensors with optical I/O that can record and report neural signals, etc. Campus Research Center Affiliations

近期论文

Nanocalorimetry using microscopic optical wireless integrated circuits. Smart, Conrad L., Alejandro J Cortese, BJ Ramshaw, Paul L McEuen icon Smart_etal_2022. Microscopic robots with onboard digital control. Reynolds, Michael F., Alejandro J. Cortese, Qingkun Liu, Zhangqi Zheng, Wei Wang, Samantha L. Norris, Sunwoo Lee et al. "Microscopic robots with onboard digital control." Science Robotics 7, no. 70 (2022): eabq2296. Programming interactions in magnetic handshake materials. Du, C. X., Zhang, H. A., Pearson, T. G., Ng, J., McEuen, P. L., Cohen, I., & Brenner, M. P. (2022). Programming interactions in magnetic handshake materials. Soft Matter, 18(34), 6404-6410. Cilia metasurfaces for electronically programmable microfluidic manipulation. Wang, Wei, Qingkun Liu, Ivan Tanasijevic, Michael F. Reynolds, Alejandro J. Cortese, Marc Z. Miskin, Michael C. Cao et al. "Cilia metasurfaces for electronically programmable microfluidic manipulation." Nature 605, no. 7911 (2022): 681-686. Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor. Tan, Cheng, Derek YH Ho, Lei Wang, Jia IA Li, Indra Yudhistira, Daniel A. Rhodes, Takashi Taniguchi et al. "Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor." Science advances 8, no. 15 (2022): eabi8481. Nanoliter-Scale Autonomous Electronics: Advances, Challenges, and Opportunities. Alyosha Christopher Molnar, Sunwoo Lee, Alejandro Cortese, Paul McEuen, Sanaz Sadeghi, and Shahaboddin Ghajari. Nanoliter-Scale Autonomous Electronics: Advances, Challenges, and Opportunities. (2021) In 2021 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-6). Accurate Measurement of the Gap of Graphene / h − BN Moiré Superlattice through Photocurrent Spectroscopy. Tianyi Han, Jixiang Yang, Qihang Zhang, Lei Wang, Kenji Watanabe, Takashi Taniguchi, Paul L. McEuen, and Long Ju. Accurate Measurement of the Gap of Graphene/h− BN Moiré Superlattice through Photocurrent Spectroscopy. (2021). Physical Review Letters, 126(14), 146402. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Qingkun Liu, Wei Wang, Michael F. Reynolds, Michael C. Cao, Marc Z. Miskin, Tomas A. Arias, David A. Muller, Paul L. McEuen, Itai Cohen. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. (2021) Science Robotics, 6(52).DOI: 10.1126/scirobotics.abe6663 Magnetic field detection limits for ultraclean graphene Hall sensors. Brian T. Schaefer, Lei Wang, Alexander Jarjour, Kenji Watanabe, Takashi Taniguchi, Paul L. McEuen, and Katja C. Nowack."Magnetic field detection limits for ultraclean graphene Hall sensors." Nature Communications 11, no. 1 (2020): 1-8. Electronically integrated, mass-manufactured, microscopic robots. Marc Z. Miskin, Alejandro J. Cortese, Kyle Dorsey, Edward P. Esposito, Michael F. Reynolds, Qingkun Liu, Michael Cao, David A. Muller, Paul L. McEuen & Itai Cohen. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020) Bidirectional Self-Folding with Atomic Layer Deposition Nanofilms for Microscale Origami. Bircan, B., Miskin, M. Z., Lang, R. J., Cao, M. C., Dorsey, K. J., Salim, M. G., ... & Cohen, I. (2020). Bidirectional Self-Folding with Atomic Layer Deposition Nanofilms for Microscale Origami. Nano Letters. Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene. Ju, L., Wang, L., Li, X., Moon, S., Ozerov, M., Lu, Z., Taniguchi, T., Watanabe, K., Mueller, E., Zhang, F., Smirnov, D., Ranna, F., McEuen, P. L. (2020). Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene. Nature communications, 11(1), 1-7. Microscopic Sensors using Optical Wireless Integrated Circuits. Alejandro J. Cortese, Conrad L. Smart, Tianyu Wang, Michael F. Reynolds, Samantha L. Norris, Yanxin Ji, Sunwoo Lee, Aaron Mok, Chunyan Wu, Fei Xia, Nathan I. Ellis, Alyosha C. Molnar, Chris Xu, and Paul L. McEuen. Proceedings of the National Academy of Sciences Apr 2020, 201919677; DOI: 10.1073/pnas.1919677117 Magnetic handshake materials as a scale-invariant platform for programmed self-assembly. Ran Niu, Chrisy Xiyu Du, Edward Esposito, Jakin Ng, Michael P. Brenner, Paul L. McEuen, Itai Cohen. Proceedings of the National Academy of Sciences Dec 2019, 116 (49) 24402-24407; DOI: 10.1073/pnas.1910332116 icon Niu-MagneticHandshake. MoS2 pixel arrays for real-time photoluminescence imaging of redox molecules. M. F. Reynolds, M. H. D. Guimarães, H. Gao, K. Kang, A. J. Cortese, D. C. Ralph, J. Park, P. L. McEuen icon Reynolds_et_al_2019-ScienceAdvances. Capillary Origami with Atomically Thin Membranes. Michael F. Reynolds, Kathryn L. McGill, Maritha A. Wang, Hui Gao, Fauzia Mujid, Kibum Kang, Jiwoong Park, Marc Z. Miskin, Itai Cohen, and Paul L. McEuen. Nano Lett. 2019, 19, 6221−6226. icon Reynolds_et_al_2019-NanoLetters-min. Atomic Layer Deposition for Membranes, Metamaterials, and Mechanisms. Kyle J. Dorsey, Tanner G. Pearson, Edward Esposito, Sierra Russell, Baris Bircan, Yimo Han, Marc Z. Miskin, David A. Muller, Itai Cohen, Paul L. McEuen. Advanced Materials (2019). doi.org/10.1002/adma.201901944 Real-time vibrations of a carbon nanotube. Arthur W. Barnard, Mian Zhang, Gustavo S. Wiederhecker, Michal Lipson Paul L. McEuen.Nature (2019). doi:10.1038/s41586-018-0861-0 A 250 μm × 57 μm Microscale Opto-Electronically Transduced Electrodes (MOTEs) for Neural Recording. (J-28) Sunwoo Lee, Alejandro J. Cortese, Aasta Gandhi, Elizabeth R. Agger, Paul L. McEuen, and Alyosha C. Molnar. IEEE TBioCas, 2018. icon MOTE_2018. Young's modulus and thermal expansion of tensioned graphene membranes. Isaac R. Storch, Roberto De Alba, Vivekananda P. Adiga, T. S. Abhilash, Robert A. Barton, Harold G. Craighead, Jeevak M. Parpia, and Paul L. McEuen. Phys. Rev. B 98, 085408 (2018) A 330μm×90μm Opto-Electronically Integrated Wireless System-on-Chip for Recording of Neural Activities. Sunwoo Lee, Alejandro J. Cortese, Paige Trexel, Elizabeth R. Agger, Paul L. McEuen, and Alyosha C. Molnar. (C-36) IEEE ISSCC, 2018. Graphene-based bimorphs for micron-sized, autonomous origami machines. Marc Z. Miskin, Kyle J. Dorsey, Baris Bircan, Yimo Han, David A. Muller, Paul L. McEuen, and Itai Cohen. Proc. Nat. Acad. Sci., 115, 466 (2018). (cover article) Measuring and Manipulating the Adhesion of Graphene. Marc Z. Miskin, Chao Sun, Itai Cohen, William R. Dichtel, and Paul L. McEuen. Nano Lett., 18, 449–454 (2018) Tunable excitons in bilayer graphene. Long Ju, Lei Wang, Ting Cao, Takashi Taniguchi, Kenji Watanabe, Steven G. Louie, Farhan Rana, Jiwoong Park, James Hone, Feng Wang, Paul L. McEuen. Science 358, 907-910 (2017) Tunable phonon-cavity coupling in graphene membranes. R. De Alba, F. Massel, I. R. Storch, T. S. Abhilash, A. Hui, P. L. McEuen, H. G. Craighead, J. M. Parpia. Nature Nano 11, 741–746 (2016) Temperature-Dependent Mechanics in Suspended Graphene Systems. Isaac Storch. PhD Thesis (2015) Graphene Kirigami. Melina K. Blees, Arthur W. Barnard, Peter A. Rose, Samantha P. Roberts, Kathryn L. McGill, Pinshane Y. Huang, Alexander R. Ruyack, Joshua W. Kevek, Bryce Kobrin, David A. Muller, and Paul L. McEuen. Nature524, 204–207 (2015) Magnetically Actuated Single-Walled Carbon Nanotubes. Samantha P. Roberts, Arthur W. Barnard, Christopher M. Martin, Melina K. Blees, Jonathan S. Alden, Alexander R. Ruyack, and Paul L. McEuen. Nano Lett. 15, 5143–5148 (2015) Folded graphene nanochannels via pulsed patterning of graphene. Ive Silvestre, Arthur W. Barnard, Samantha P. Roberts, Paul L. McEuen, Rodrigo G. Lacerda. Applied Physics Letters 106, 153105 (2015) Microtweezers for Studying Vibrating Carbon Nanotubes. Arthur Barnard. PhD Thesis (2015) Graphene as Atomic Paper: From Bending Stiffness to Mechanical Metamaterials. Melina Blees. PhD Thesis (2015)