Andersen, David J
Professor
所属大学: California Institute of Technology, Caltech
所属学院: Division of Biology and Biological Engineering
个人简介
A.B., Harvard University, 1978; Ph.D., Rockefeller University, 1983. Assistant Professor, Caltech, 1986-92; Associate Professor, 1992-96; Professor, 1996-2004; Roger W. Sperry Professor, 2004-09; Benzer Professor, 2009-; Chen Institute for Neuroscience Leadership Chair, 2017-; HHMI Investigator, 1989-; Director, 2017-.
研究领域
Genetic dissection of neural circuits controlling emotional behaviors Director, Tianqiao and Chrissy Chen Institute for Neuroscience The Neurobiology of Emotional Behavior Research interests in my laboratory focus on understanding how emotional behavior is encoded in the brain, at the level of specific neuronal circuits, and the specific neuronal subtypes that comprise them. We want to understand the structure and dynamic properties of these circuits and how they give rise to the outward behavioral expressions of emotions such as fear, anxiety or anger. This information will provide a framework for understanding how and where in the brain emotions are influenced by genetic variation and environmental influence ("nature" and "nurture"), and may someday lead to improved drugs to treat psychiatric disorders such as depression. We are using both mice and the vinegar fly Drosophila melanogaster as model systems. A central focus of the laboratory is on the neural circuits underlying aggression and fear. We are using molecular genetic tools, as well as functional imaging and electrophysiology, to establish cause-and-effect relationships between the activity of specific neuronal circuits and behavior. We hope that this research will lead to new insights into the organization of emotion circuits, and their dysregulation in psychiatric disorders. Emotion circuits in the mouse brain Research using the laboratory mouse Mus musculus focuses on understanding the neurobiology of fear, anxiety and aggression, and the interrelationships between the circuitry that processes these emotions. Neurobiology of fear and anxiety Our studies of fear are currently centered on the function of circuits in the amygdala, a medial temporal lobe structure that plays an important role in Pavlovian learned fear, a form of classical conditioning. We have identified genes that mark several subpopulations of neurons that form a dynamic microcircuit within the central nucleus of the amygdala (Haubensak et al., 2010). The function of this microcircuit in fear behavior is being dissected using optogenetic tools, such as channelrhodopsin, and pharmacogenetic tools, such as the ivermectin-gated glutamate sensitive chloride channel (GluCl) (Lerchner et al. 2007), together with acute slice electrophysiology and genetically based anatomical tracing of synaptic pathways. More recent studies have applied optogenetic approaches to dissecting the neural circuitry of the lateral septum, a relatively under-studied structure that plays an important role in the control of stress-induced anxiety, as well as neurons in the hypothalamus that control innate fear.
Developmental Biology and Genetics; Neuroscience; Evolutionary and Organismal Biology
近期论文
Remedios, Ryan and Kennedy, Ann and Zelikowsky, Moriel et al. (2017) Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature, 550 (7676). pp. 388-392. ISSN 0028-0836. Watanabe, Kiichi and Chiu, Hui and Pfeiffer, Barret D. et al. (2017) A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila. Neuron, 95 (5). pp. 1112-1128. ISSN 0896-6273. David J. Anderson. (2016) Circuit modules linking internal states and social behaviour in flies and mice. Nature Reviews Neuroscience 17 pp. 692-704. doi:10.1038/nrn.2016.125 Anderson, David J. (2016) Social behavior circuits in flies and mice. Chemical Senses, 41 (9). E111. ISSN 0379-864X. Hoopfer, Eric D. and Jung, Yonil and Inagaki, Hidehiko K. et al. (2015) P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife, 4 . Art. No. 11346. ISSN 2050-084X. (In Press) Hong, Weizhe and Kennedy, Ann and Burgos-Artizzu, Xavier P. et al. (2015) Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proceedings of the National Academy of Sciences . ISSN 0027-8424. http://resolver.caltech.edu/CaltechAUTHORS:20150914-091025001 Gibson, William T. and Gonzalez, Carlos R. and Fernandez, Conchi et al. (2015) Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila. Current Biology, 25 (11). pp. 1401-1415. ISSN 0960-9822. http://resolver.caltech.edu/CaltechAUTHORS:20150514-164948010 Jorgenson, Lyric A. and Newsom, William T. and Anderson, David J. et al. (2015) The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370 (1668). Art. No. 20140164. ISSN 0962-8436. PMCID PMC4387507. http://resolver.caltech.edu/CaltechAUTHORS:20150527-083028049 Kunwar, Prabhat S. and Zelikowsky, Moriel and Remedios, Ryan et al. (2015) Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4 . Art. No. e06633 . ISSN 2050-084X. PMCID PMC4379496. http://resolver.caltech.edu Kennedy, Ann and Asahina, Kenta and Hoopfer, Eric et al. (2014) Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition. Cold Spring Harbor Symposia on Quantitative Biology, 79 . pp. 199-210. ISSN 0091-7451. http://resolver.caltech.edu/CaltechAUTHORS:20150511-132932281 Inagaki, Hidehiko K. and Panse, Ketaki M. and Anderson, David J. (2014) Independent, Reciprocal Neuromodulatory Control of Sweet and Bitter Taste Sensitivity during Starvation in Drosophila. Neuron, 84 (4). pp. 806-820. ISSN 0896-6273. http://resolver.caltech.edu/CaltechAUTHORS:20141110-091624067 Anderson, David J. and Perona, Pietro (2014) Toward a Science of Computational Ethology. Neuron, 84 (1). pp. 18-31. ISSN 0896-6273. http://resolver.caltech.edu/CaltechAUTHORS:20141009-082919387 Hong, Weizhe and Kim, Dong-Wook and Anderson, David J. (2014) Antagonistic Control of Social versus Repetitive Self-Grooming Behaviors by Separable Amygdala Neuronal Subsets. Cell, 158 (6). pp. 1348-1361. ISSN 0092-8674. http://resolver.caltech.edu/CaltechAUTHORS:20140909-173728039 Anderson, David J. (2014) Paul Patterson: In Memoriam. Neuron, 83 (5). pp. 1040-1042. ISSN 0896-6273.http://resolver.caltech.edu/CaltechAUTHORS:20141002-085840019 Cai, Haijiang et al. (2014) Central amygdala PKC-δ^+ neurons mediate the influence of multiple anorexigenic signals. Nature Neuroscience, 17 (9). pp. 1240-1248. ISSN 1097-6256. http://resolver.caltech.edu/CaltechAUTHORS:20140804-101209127 Lim, Rod S. et al. (2014) How Food Controls Aggression in Drosophila. PLoS ONE, 9 (8). Art. No. e105626. ISSN 1932-6203.http://resolver.caltech.edu/CaltechAUTHORS:20140926-091355358 Lee, Hyosang et al. (2014) Scalable control of mounting and attack by Esr1^+ neurons in the ventromedial hypothalamus. Nature, 509 (7502). pp. 627-632. ISSN 0028-0836.http://resolver.caltech.edu/CaltechAUTHORS:20140422-111238454 Falkner, Annegret L. et al. (2014) Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression. Journal of Neuroscience, 34 (17). pp. 5971-5984. ISSN 0270-6474. http://resolver.caltech.edu/CaltechAUTHORS:20140529-084640380 Anderson, David J. and Adolphs, Ralph (2014) A Framework for Studying Emotions across Species. Cell, 157 (1). pp. 187-200. ISSN 0092-8674. http://resolver.caltech.edu/CaltechAUTHORS:20140403-083948662 Anthony, Todd E. et al. (2014) Control of Stress-Induced Persistent Anxiety by an Extra-Amygdala Septohypothalamic Circuit. Cell, 156 (3). pp. 522-536. ISSN 0092-8674.http://resolver.caltech.edu/CaltechAUTHORS:20140210-144224757 Asahina, Kenta et al. (2014) Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila. Cell, 156 (1-2). pp. 221-235. ISSN 0092-8674.http://resolver.caltech.edu