张秋梅 照片

张秋梅

副教授

所属大学: 长春大学

所属学院: 理学院

邮箱:
zhangqm1110@163.com

个人主页:
http://lxy.ccu.edu.cn/info/1103/2282.htm

个人简介

2003年7月于东北师范大学数学与统计学院获理学学士学位,2007年7月获东北师范大学数学与统计学院理学硕士学位,2016年7月获东北师范大学数学与统计学院理学博士学位。2003年7月到长春大学理学院任助教,并于2017年9月晋升长春大学理学院副教授。 自2005年起,师从东北师范大学数学系蒋达清教授从事常微分方程和泛函微分方程定性理论方面的工作,研究内容为常微分方程边值问题、泛函微分方程边值问题等国际前沿问题;2012年以后从事随机微分方程的研究,研究内容为随机生态流行病模型的渐近行为、平稳分布和遍历性,随机非自治 Lotka-Volterra模型的周期解,Levy 噪声下的随机种群模型的渐近行为等

研究领域

常微分方程和泛函微分方程定性理论研究 随机微分方程及其应用

近期论文

1.“The principle of competitive exclusion about a stochastic Lotka-Volterra model with two predators competing for one prey”, Discrete Dynamics in Nature and Society,SCI, (2018) 7312581.

2.“Asymptoticbehavior of a stochastic population model with Allee effect by Levy jumps”, Nonlinear Analysis: Hybrid Systems, SCI,24(2017) 1-12.

3.“Periodicsolution for a stochastic non-autonomous competitive Lotka-Volterra model in apolluted environment”, Physica A: Statistical Mechanics and its Applications, SCI,471(2017) 276-287.

4.“Competitive exclusion in a stochastic chemostat model with Holling type II functional response”,J Math Chem, SCI,54(2016) 777-791.

5.“Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise” ,J. Math. Anal. Appl.SCI,433(2016) 121-148.

6.“The stability of a predator-prey system with linear mass-action functional response perturbed by white noise”,Advances in Difference Equations,SCI,(2016) 2016:54.

7.“The coexistence of a stochastic Lotka–Volterra model with two predatorscompeting for one prey”, Applied Mathematics and Computation, SCI,269 (2015) 288-300.

8.“The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise”, Discrete and Continuous Dynamical Systems Series B, SCI,20 (2015) 295-321.

9.“The long time behavior of a predator-prey model with disease in the prey by stochastic perturbation”, Applied Mathematics and Computation, SCI,245(2014) 305-320.

10. Multiple solutions to semipositoneDirichlet boundary value problems with singular dependent nonlinearities forsecond order three-point differential equations, Computers and Mathematics withApplications, SCI, 59 (2010) 2516-2527.

11. Upper and lower solutions method and asecond order three-point singular boundary value problem, Computers andMathematics with Applications,SCI, 56 (2008) 1059-1070.