王河山
讲师 硕导
所属大学: 郑州大学
所属学院: 电气工程学院
个人简介
教育背景 2011/09-2016/01,华东理工大学,信息工程学院,博士 2005/09-2009/06,郑州大学,电气工程学院,学士 工作经历 ➢ 2016/01-至今,郑州大学,电气工程学院,直聘副教授 ➢ 2018.12-2019.12,加拿大温莎大学,访问学者 科研项目 ➢ (主持)国家自然科学基金项目(61603343),2017.01-2019.12
研究领域
人工智能、动态神经网络、建模与优化、图像识别
近期论文
[1] Wang Heshan, Ni Chunjuan, Yan Xuefeng. Optimizing the echo state network based on mutual information for modeling fed-batch bioprocesses[J]. Neurocomputing, 2017, 225: 111-118. [2] Wang H, Wu Q M J, Wang J, et al. Optimizing simple deterministically constructed cycle reservoir network with a Redundant Unit Pruning Auto-Encoder algorithm[J]. Neurocomputing , 2019, 356: 184-194. [3] Wang H, Wu Q M J, Xin J, et al. Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm[J]. Knowledge-Based Systems, 2020, 191:5. [4] Heshan Wang, Xuefeng Yan*. Reservoir Computing with Sensitivity Analysis Input Scaling Regulation and Redundant Unit Pruning for Modeling Fed-Batch Bioprocesses[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53(16):6789-6797. [5] Heshan Wang, Xuefeng Yan*, Improved Simple Deterministically Constructed Cycle ReservoirNetwork with Sensitive Iterative Pruning Algorithm[J]. Neurocomputing, 2014, 145(18):353–362. [6] Heshan Wang, Xuefeng Yan*.Optimizing the echo state network with a binary particle swarm optimization algorithm[J]. knowledge based systems, 2015, 86:182-193. [7] Heshan Wang, Xuefeng Yan*. Chlorophyll-A Predicting Model Based On Dynamic Neural Network[J]. Applied Artificial Intelligence, 2015, 29(10): 962-978.