周杰 照片

周杰

讲师 博士

所属大学: 浙江海洋大学

所属学院: 信息工程学院

邮箱:
zhoujie@zjou.edu.cn

个人主页:
http://ie.zjou.edu.cn/info/1173/1651.htm

个人简介

周杰,江苏盐城人,博士,讲师。2006年毕业于南京师范大学基础数学专业,获理学硕士学位;2016年毕业于西北工业大学交通信息工程及控制专业,获工学博士学位。目前从事数学与应用数学的教学与研究工作。在国内外杂志期刊发表学术论文十多篇,其中SCI收录论文15篇,论文被引193次,H指数8。主持浙江省教育厅项目1项、校级项目3项,省属高校科研业务项目1项。获首届全国高校数学微课程教学设计竞赛华东赛区二等奖2项,校级教学获奖2项,指导学生发表SCI论文1篇。

科研项目:微观跟驰交通流模型研究,浙江省教育厅一般项目,2013,主持。

奖项 1.2018西北工业大学优秀博士论文; 2.舟山市自然科学论文一等奖,1/1。 讲授课程:高等数学,线性代数,概率论与数理统计

研究领域

微分方程、交通流理论等

近期论文

[1] Jie Zhou, Zhong-Ke Shi, Chao-PingWang. Lattice hydrodynamic model for two-lane traffic flow on curved road. Nonlinear Dynamics, 2016, 85(3): 1423-1443. (SCI、EI)

[2] Jie Zhou, Zhong-Ke Shi, Zhi-Song Liu. A novel lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s memory effect. Nonlinear Dynamics, 2016, 83(4): 2019-2033. (SCI、EI)

[3] Jie Zhou, Zhong-Ke Shi. Lattice hydrodynamic model for traffic flow on curved road. Nonlinear Dynamics, 2016, 83(3): 1217-1236. (SCI、EI)

[4] Jie Zhou, Zhong-Ke Shi. A modified full velocity difference model with the consideration of velocity deviation. International Journal of Modern Physics C, 2016, 27(6): 1650069. (SCI)

[5] Jie Zhou, Zhong-Ke Shi. A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of lateral discomfort. Nonlinear Dynamics, 2015, 81(3): 1113-1131. (SCI、EI)

[6]Jie Zhou, Zhong-Ke Shi. A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect. Nonlinear Dynamics, 2015, 81(3): 1247-1262. (SCI、EI)

[7]Jie Zhou. An extended visual angle model for car-following theory. Nonlinear Dynamics, 2015, 81(1): 549-560. (SCI、EI)

[8] Jie Zhou, Zhong-Ke Shi. Lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian density difference. International Journal of Modern Physics C, 2015, 26(8): 1550092. (SCI)

[9] Jie Zhou, Zhong-Ke Shi, Jin-Liang Cao. An extended traffic flow model on a gradient highway with the consideration of the relative velocity. Nonlinear Dynamics, 2014, 78(3): 1765-1779. (SCI、EI)

[10] Jie Zhou, Zhong-Ke Shi, Jin-Liang Cao. Nonlinear analysis of the optimal velocity difference model with reaction-time delay. Physica A, 2014, 396: 77-87.(SCI、EI)

[11] Jie Zhou, Zuodong Yang, Jianqing Zhao. Existence of singular positive solutions for a class quasilinear elliptic equations. Applied Mathematics and Computation, 2007, 190: 423-431. (SCI、EI)