金庆伟 照片

金庆伟

教授

所属大学: 浙江大学

所属学院: 管理学院

邮箱:
qingweijin@zju.edu.cn

个人主页:
https://person.zju.edu.cn/qingweijin

个人简介

金庆伟博士,浙江大学管理学院教授,毕业于美国北卡罗莱纳州立大学工业与系统工程学系工业工程方向。主要研究方向为优化理论与算法,收益管理,运营与供应链管理,多年来持续关注鲁棒优化决策、整数优化决策、基于消费者行为和数据驱动的动态定价决策、产品组合规划决策等问题,主持相关领域多项国家级、省部级科研项目。发表国际期刊论文数十篇,包括SIAM Journal on Optimization、Production and Operations Management、INFORMS Journal on Computing等国际高水平期刊。曾为联合利华、天猫供应链、览众科技等企业提供销量预测、畅销品识别、产品调拨等解决方案。 2023 年-至今,浙江大学管理学院,数据科学与管理工程学系,教授 2013 年-2023 年,浙江大学管理学院,数据科学与管理工程学系,副教授 2011 年-2013 年,浙江大学管理学院,管理科学与工程学系,讲师 2007 年-2011 年,美国北卡罗来纳州立大学,工业与系统工程系,工业工程专业,博士学位,导师方述诚教授 2004 年-2007 年,清华大学,数学科学系,运筹学与控制论专业,硕士学位,导师邢文训教授 2000 年-2004 年,清华大学,数学科学系,信息与计算科学专业,学士学位

研究领域

混合整数、线性与非线性优化及应用 收益管理 运营管理 供应链管理

近期论文

Wang, J., Wu, S., Jin, Q., Wang, Y., & Chen, C. (2023). Identifying Popular Products at an Early Stage of Sales Season for Apparel Industry. INFORMS Journal on Applied Analytics. DOI: 10.1287/inte.2023.0022. Jin, Q., Wu, Y., Zeng, Y., & Zhang, L. (2023). Population monotonic allocation schemes for the two-period economic lot-sizing games. Operations Research Letters, 51(3), 296-303. Jin, Q., Zhu, M., Yang, Y., & Liu, L. (2022). Consumer search with anticipated regret, Production and Operations Management, 31(8), 3337-3351. Pei, Z., Lu, H., Jin, Q., & Zhang, L. (2022). Target-based distributionally robust optimization for single machine scheduling. European Journal of Operational Research, 299(2), 420-431.Lu, C., Deng, Z., Fang, S. C., Jin, Q., & Xing, W. (2022). Fast computation of global solutions to the single-period unit commitment problem. Journal of Combinatorial Optimization, 44(3), 1511-1536.Jin, Q., Lin, J.-Y., & Zhou, S. X. (2021). Price discounts and personalized product assortments under multinomial logit choice model: A robust approach. IISE Transactions, 53(4), 453–471. Jiang, S., Fang, S. C., & Jin, Q. (2021). Sparse Solutions by a Quadratically Constrained ℓ q (0< q< 1) Minimization Model. INFORMS Journal on Computing, 33(2), 511-530.Zhou, W., Pu, Y., Dai, H. & Jin, Q. (2017). Cooperative interconnection settlement among ISPs through NAP, European Journal of Operational Research, 256(3), 991-1003. Lu, C., Deng, Z. & Jin, Q. (2017). An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints, Journal of Global Optimization, 67(3), 475-493. Tian, Y., Fang, S., Deng, Z. & Jin, Q. (2016). Cardinality constrained portfolio selection problem: A completely positive programming approach, Journal of Industrial and Management Optimization, 12(3), 1041-1056. Gai, L., Jin, Q., Tian, Y. & Huang, Y. (2016). Reducing multivalued discrete variables in solving separable task assignment problems, Operations Research Society of China, 4(1), 97-110. Tian, Y., Jin, Q. & Deng, Z. (2016). Quadratic optimization over a polyhedral cone, Journal of Industrial and Management Optimization, 12(1), 269-283. Li, P. & Jin, Q. (2016). On the resolution of bipolar max-min equations, Kybernetika, 52(4), 514-530. Deng, Z., Fang, S., Jin, Q. & Lu, C. (2015). Conic approximation to nonconvex quadratic programming with convex quadratic constraints, Journal of Global Optimization, 61(3), 459-478. Shi, Z. & Jin, Q. (2014). Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems, Journal of Industrial and Management Optimization, 10(3), 871-882. Jin, Q., Fang, S., Lu, C. & Xing, W. (2014). Solving conic quadratically constrained quadratic programming problems, Pacific Journal of Optimization, 10(3), 503-516. Lu, C., Jin, Q., Fang, S., Wang, Z. & Xing, W. (2014). Adaptive computable approximation to cones of nonnegative quadratic functions, Optimization, 63(6), 955-980. Deng, Z., Fang, S., Jin, Q. & Xing, W. (2013). Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme, European Journal of Operational Research, 229(1), 21-28. Jin, Q., Tian, Y., Deng, Z., Fang, S. & Xing, W. (2013). Exact computable representation of some second-order cone constrained quadratic programming problems, Operations Research Society of China, 1, 107-134.