纪杨建
教授
个人简介
男,博士,教授,博士生导师。浙江大学工业工程研究所所长,浙江省先进制造技术重点实验室副主任。美国佐治亚理工学院作访问学者。入选浙江省“新世纪151人才工程”。中国机械工程学会成组与智能集成技术分会常务委员,中国机械工程学会环境保护与绿色制造技术分会常务委员,Journal of Engineering Design杂志编委。主要研究领域包括工业大数据、标准数字化、大批量定制、制造服务等。作为负责人,先后主持了国家自然基金、国家重点研发计划课题等多项国家、省部和企业项目。获省部级奖3次(一、二、三等奖各1次)。在国内外核心期刊上已发表论文100余篇。合作出版专著7本,参编国家标准6项、团体标准7项。研究成果在国内多家企业得到实际应用。
研究领域
工业大数据 标准数字化 大批量定制 制造服务
近期论文
近几年发表的部分学术论文 [1]Li QX, Ji YJ* , Zhu MR , Zhu XY , Sun LJ . Unsupervised feature selection using chronological fitting with Shapley Additive explanation (SHAP) for industrial time-series anomaly detection. Applied Soft Computing, 2024,155:111426 [2]Sun LJ , Ji YJ*, Li QX, Yang TN. A process knowledge-based hybrid method for univariate time series prediction with uncertain inputs in process industry. Advanced Engineering Informatics, 2024,60:102438 [3]Sun LJ, Ji YJ* , Zhu ZR, Jiang XY, Zhu XY, Zhang N. Chronicle knowledge-based multi-level response prediction for predictive control by forest models in process industry. Engineering Applications of Artificial Intelligence, 2024,129:107632 [4]Zhu XY, Ji YJ*. A reduced order model based on adaptive proper orthogonal decomposition incorporated with modal coefficient learning for digital twin in process industry. Journal of Manufacturing Processes,2023,102:780-794 [5]Zhu MR, Ji YJ* , Zhang N. Traceability of abnormal energy consumption modes in grinding systems based on evolution analysis of causal network structure. Advanced Engineering Informatics, 2023,57:102119 [6]Sun LJ, Ji YJ* , Peng T. Multi-Task Regression with Process Knowledge-Based Forest Learners in Process Industries, 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 2023, pp. 1-6. [7]Wu YW, Ji YJ*. Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining. Journal of Informetrics, 2023, 17(2): 101398. [8]Wu YW, Gu F , Ji YJ , Ma SC, Guo JF. Electric vehicle adoption and local PM2.5 reduction: Evidence from China. Journal of Cleaner Production,2023,396:136508 [9]Sun LJ , Ji YJ*, Sun ZT , Li QX , Jin YJ. A clustering-based energy consumption evaluation method for process industries with multiple energy consumption patterns. International Journal of Computer Integrated Manufacturing, 2023, 36(10):1526-1554 [10]Zhu MR, Ji YJ*, Zhu XY, Ren K. Energy consumption mode identification and monitoring method of process industry system under unstable working conditions. Advanced Engineering Informatics, 2023, 55:101893 [11]Wu Y, Ji YJ*, Gu F. Identifying firm-specific technology opportunities in a supply chain: Link prediction analysis in multilayer networks[J]. Expert Systems with Applications, 2023, 213: 119053 [12]Zhu XY, Ji YJ*. A digital twin-based multi-objective optimization method for technical schemes in process industry. International Journal of Computer Integrated Manufacturing, 2023,36(3):443-468 [13]朱明睿,甘红宇,张念,纪杨建*。基于近邻转移约束规则的非确定工业过渡过程的模态识别方法。计算机集成制造系统,2022,28(11):3576-3587 [14]Sun LJ, Ji YJ*, Zhu XY, Peng T. Process knowledge-based random forest regression for model predictive control on a nonlinear production process with multiple working conditions. Advanced Engineering Informatics, 2022, 52: 101561 [15]Zhu XY, Ji YJ*. A digital twin-driven method for online quality control in process industry. International Journal of Advanced Manufacturing Technology, 2022,119(5-6):3045-3064 [16]Wu YW, Ji YJ*, Gu F, et al. A collaborative evaluation method of the quality of patent scientific and technological resources. World Patent Information, 2021, 67: 102074 [17]Sun LJ, Ji YJ*, Zhu MR, Gu F, Dai F, Li K. A new predictive method supporting streaming data with hybrid recurring concept drifts in process industry. Computers & Industrial Engineering, 2021, 161: 107625 [18]Zhu MR, Ji YJ*, Ju WJ, Gu XJ, Liu C, Xu ZF. A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform. IEICE Transactions on Information and Systems. 2021, E104.D(8): 1185-1194 [19]Zhu MR, Ji YJ*, Zhang Z, Sun YY. A data-driven decision-making framework for online control of vertical roller mill. Computers & Industrial Engineering. 2020, 143: 106441 [20]吴颖文, 纪杨建*, 顾新建. 基于专利动态复杂网络的产业共性技术预测. 计算机集成制造系统, 2020, 26(12): 3185-3194 [21]Wu Y, Gu F, Ji YJ, Guo JF, Fan Y. Technological capability, eco-innovation performance, and cooperative R&D strategy in new energy vehicle industry: Evidence from listed companies in China. Journal of Cleaner Production, 2020, 261: 121157