白剑 照片

白剑

教授

所属大学: 浙江大学

所属学院: 光电科学与工程学院

邮箱:
bai@zju.edu.cn

个人主页:
https://person.zju.edu.cn/baijian

个人简介

白剑,男,1967年1月生。长期从事折衍混合光学成像及光学检测技术研究,承担创新应用转化项目、国家自然科学基金等多项科研项目。在国内首次提供可供使用的中波红外折/衍混合光学系统,实现了红外系统在空间环境下的温度适应性、轻小型化以及高分辨,得到成功应用。承担了某大型系统的光学相机研制工作。相机基于平面圆柱投影原理,实现了半球成像视场及轻小型化。作为该系统的主要光学模块,成功拍摄到地球照片。该研究成果荣获浙江省科技进步一等奖。研制了大口径长焦距透镜焦距检测仪器,成为激光聚变研究中心标检设备。在国内外刊物发表学术论文100余篇,其中国际重要刊物学术论文20余篇,获国家授权发明专利二十余项。 工作经历 2004年-至今,浙江大学光电科学与工程学院,教授 1998年-2000年,大阪大学,博士后 1997年-2004年,浙江大学光电信息工程学系,副教授 1995年-1997年,浙江大学光学仪器系,讲师 学习经历 1992年9月-1995年9月,浙江大学光学仪器系,工学博士 1989年9月-1992年6月,浙江大学光学仪器系,工学硕士 1985年9月-1989年6月,浙江大学混合班(竺可桢学院前身)计算机科学与技术,工学学士 实验室研究方向 1.全景光学环带凝视成像光学系统 2.微光机电系统加速度计。结合微光学技术以及微机电系统,实现了基于微光腔的精密加速度测量,取得包括灵敏度提升、串扰抑制、工艺优化、温度效应分析补偿在内的一系列关键技术突破。目前做到的加速度测量灵敏度达2500V/g,噪声水平在180ng/rt Hz,部分性能指标达到国内先进,国际一流水平。 3.长焦距测量。提出了基于平行光及等周期光栅的焦距测量方法进行了数值分析,找出了影响测量精度的关键因素,而后提出了基于发散光及不等周期光栅的长焦距检测方法(LFMM)。研制开发了完整的测量系统,该系统的焦距测量精度优于0.16%,重复性、稳定性、复现性均优于0.01%,表明该方法实现了大口径长焦距透镜焦距的全口径、高精度测量。 4.折/衍混合光学系统。首次在国内实现了中波红外折/衍混合光学系统(由传统折射元件与新型二元衍射元件所组成),具有重量轻、体积小、成像优越及被动无热化的特点,已得到了成功应用。2004年利用该技术实现了在大温度范围内无需调焦即可保持清晰成像的光学系统,居国内领先水平。该成果对国家安全产生重要意义。 招生 1.欢迎光电科学与工程、电子工程、机械工程、物理学系等相关专业本科生、硕士生前来攻读硕士、博士学位; 2.欢迎本校的本科生来实验室做SRTP、光电Family、国创省创等。 近年毕业研究生去向 博士毕业生 科研单位 西北工业大学、中国电子科技集团29所/38所/36所、中船重工715所、湖北工业大学等; 事业单位 国家电网等; 企业单位 华为、大疆、飞利浦照明等; 硕士毕业生 华为、阿里巴巴、字节跳动,百度、小米、美团、虹软、滴滴、朗讯、AutoDesk、Marvell、ASML、瑞声、浙江移动、浙江中控、中船重工717所、中国科学院上海微小卫星工程中心等。 出版著作 微光学与系统[M],2008-03-01,ISBN:

研究领域

微光学 光学成像 光学检测

近期论文

2023 1. Pan YR, Gao SH, Liao YQ , Bai J, Wang KW, Athermal panoramic annular lens design with a thermal analysis method[J]. Applied Optics, 2023, 62(35):9383-9392. 2. Pan N, Gao SH, Liao YQ , Bai J, Wang KW, Design of a compact triple-channel panoramic stereo imaging system[J]. Optics Express,2023,31(11):17731-17745. 3. Ke F, Gao SH, Liao YQ , Bai J, Wang KW, Ultra-wide angle panoramic imaging system based on a multiplexed reflective surface[J]. Applied Optics, 2023, 62(24):6507-6517. 4. Yang YZ, Wang J, Li YJ, Bai J, Design of a panoramic annular lens system with an ultra-wide angle via an annular Gaussian radial basis function freeform surface[J]. Applied Optics, 2023, 62(15):3941-3947. 5. Li YJ, Liu HW, Yang YZ, Bai J, Fast wavefront sensing method based on diffraction basis vectors for tightly focused optical systems[J]. Optics Express,2023,31(24):40005-40017. 6. Liao YQ, Gao SH, Bai J, Wang KW, General design algorithm for stray light suppression of a panoramic annular system[J]. Optics Express, 2023, 31(14):23491-23506. 7. Zhao HK, Zhou YD, Wu HD, Kutser T, Han YC, Ma RH, Yao ZW, Zhao HD, Xu PT, …,Bai J, …, Liu D, Potential of Mie-Fluorescence-Raman Lidar to Profile Chlorophyll a Concentration in Inland Waters[J]. ENVIRONMENTAL SCIENCE &TECHNOLOGY, 2023, 57(38):14226-14236. 2022 Wang J, Bai J, Wang KW, Gao SH, Design of stereo imaging system with a panoramic annular lens and a convex mirror[J]. Optics Express, 2022, 30(11):19017-19029. Zhu CX, Wang J, Fei WH, Fang WD, Bai J, High-performance compact athermal panoramic annular lens design with separated radial optical power[J]. Applied Optics, 2022, 61(25):7292-7300. Gao SH, Sun L, Jiang Q, Shi H, Wang J, Wang KW, Bai J, Compact and lightweight panoramic annular lens for computer vision tasks[J]. Optics Express, 2022, 30(17):29940-29956. Wang J, Yang KL, Gao SH, Sun L, Zhu CX, Wang KW, Bai J, High-performance panoramic annular lens design for real-time semantic segmentation on aerial imagery[J]. OPTICAL ENGINEERING, 2022, 61(3). Zhao L, Fei WH, Li YJ, Wang KW, Bai J, Semi-analytic Fresnel diffraction calculation with polynomial decomposition[J]. Optics Letters, 2022, 47(15):3776-3779. Gao SH, Yang KL, Shi H, Wang KW, Bai J, Review on Panoramic Imaging and Its Applications in Scene Understanding[J]. IEEE, 2022, Volume 71, DOI, 10.1109/ TIM.2022.3216675 Xue YZ, Chen YK, Yang YY, Bai J, Point diffraction interferometer based on a silicon nitride waveguide spherical wave source[J]. Applied Optics, 2022, 61(20):5850-5858. Wang C, Wang Y, Fang WD, Song XX, Quan AJ, Gidts M, Zhang HM, Liu HF, Bai J, Design of a large-range rotary microgripper with freeform geometries using a genetic algorithm[J]. MICROSYSTEMS & NANOENGINEERING, 2022, 8(1). DOI: 10.1038/ s41378-021-00336-0 Xu X, Fang WD, Bai J, Chen JX, Yao Y, Lu QB, Extending the Validity of Squeeze Film Damping Models with Lower Aspect Ratios[J]. SENSORS, 2022, 22(3). Xu X, Wu S, Fang WD, Yu Z, Jia ZY, Wang XX, Bai J, Lu QB, Bandwidth Optimization of MEMS Accelerometers in Fluid Medium Environment[J]. SENSORS, 2022, 22(24). Fang WD, Zhu QX, Bai J, Chen JX, Xu X, Wang C, Lu QB, Accurate mechanical-optical theoretical model of cross-axis sensitivity of an interferometric micro-optomechanical accelerometer[J]. Applied Optics, 2022, 61(11):3201-3208. 2021 He F, Bai J. Analysis and correction of spherical aberrations in long focal length measurements[J]. Optics Communications, 2021, 482: 126564. Fei W, Zhao L, Bai J, et al. Feature-based characterization and extraction of ripple errors over the large square aperture[J]. Optics Express, 2021, 29(6): 8296-8311. Zhao L, Yan H, Hou J, et al. Non-propagation fast phase diverse phase retrieval for wavefront measurement with generalized FFT-based basis function[J]. Optics Express, 2021, 29(12): 18817-18830. Wang J, Amani A, Zhu C, et al. Design of a compact varifocal panoramic system based on the mechanical zoom method[J]. Applied Optics, 2021, 60(22): 6448-6455. Huang H, Fang W, Wang C, et al. Investigation of the Influence of Temperature and Humidity on the Bandwidth of an Accelerometer[J]. Micromachines, 2021, 12(8): 860. Zhao L, Yan H, Fei W, et al. Cross-iteration multi-step optimization strategy for three-dimensional intensity position correction in phase diverse phase retrieval[J]. Optics Express, 2021, 29(18): 29186-29201. Fei W, Zhao L, Bai J, et al. Two characterization methods of ripple errors for the large square aperture[J]. Applied Optics, 2021, 60(28): 8706-8715. Lu Q, Fang W, Wang C, et al. Investigation of a complete squeeze-film damping model for MEMS devices[J]. Microsystems & nanoengineering, 2021, 7(1): 1-13. Chen J, Lu Q, Bai J, et al. A Temperature Control Method for Microaccelerometer Chips Based on Genetic Algorithm and Fuzzy PID Control[J]. Micromachines, 2021, 12(12). Zhu C, Bai J. Design of athermalized wide-angle low-distortion lens using freeform surface[C]//Optical Design and Testing XI. SPIE, 2021, 11895: 167-175. 2020 Zhao L, Hao Y, Bai J, et al. Simultaneous reconstruction of phase and amplitude for wavefront measurement based on nonlinear optimization algorithms[J]. Optics Express, 2020, 28(13). Zhao L, Bai J, Hao Y, et al. Modal-based wavefront measurement with undersampled data[J]. Optics Letters, 2020, 45(19). Fang W, Wang C, J Bai, et al. Investigation of the Thermal Deformation of a Chip-scale Packaged Optical Accelerometer[J]. Measurement, 2020, 163:108017. Wang C, Chen F, Wang Y, et al. Micromachined Accelerometers with Sub-g/√Hz Noise Floor: A Review[J]. Sensors, 2020, 20(14):4054. Wang C, Song X, Fang W, et al. Design of freeform geometries in a MEMS accelerometer with a mechanical motion preamplifier based on a genetic algorithm[J]. Microsystems & Nanoengineering, 2020, 6(1). Amani A, Bai J, X Huang. Dual-view catadioptric panoramic system based on even aspheric elements[J]. Applied Optics, 2020, 59(25). Zhao L, Bai J, Hou J, Modal-based adaptive autofocusing phase retrieval for wavefront measurement[C]. Optical Design and Testing X. 2020. Lu B, Zhao L, J Bai, et al. Optimized phase retrieval method based on multi-focus property of zone plate[C].Optical Design and Testing X. 2020.