夏长荣 照片

夏长荣

教授

所属大学: 中国科学技术大学

所属学院: 化学与材料科学学院

邮箱:
xiacr@ustc.edu.cn

个人主页:
https://faculty.ustc.edu.cn/xiazhangrong/zh_CN/zdylm/678509/list/index.htm

个人简介

教育简历 1985年09月 - 1990年07月,中国科学技术大学材料系 学士 1990年09月 - 1993年01月,中国科学技术大学材料系 硕士 1993年03月 - 1996年01月,中国科学技术大学材料系 博士 工作简历 1996年01月 - 1998年05月,中国科学技术大学材料系 讲师 1998年05月 - 2004年01月,中国科学技术大学材料系 副教授 2004年01月 - 现在,中国科学技术大学材料系 教授 博导 工作期间出国经历 1997年01月 - 1997年08月,瑞典Upssala大学和法国Montpellier大学 2000年05月 - 2002年09月,美国Georgia Institute of Technology 2010年07月 - 2010年09月,美国University of South Carolina

研究领域

研究兴趣主要集中在无机非金属材料的合成科学,探索应用于洁净能源和环境工程的新材料,同时研究材料的结构和性能的关系。研究领域包括无机固体材料合成化学,固态离子学,固体电化学和能源化学。研究对象主要为固体氧化物燃料电池,固体氧化物电解电池,陶瓷膜反应器等。

近期论文

[1]Chen, Yin; Zhao, Yongtao; Zhang, Shaowei; Zhang, Binze; Su, Mingchao; Wang, Deliang, Xia, Changrong. Supersonic spray derived Cu–Co oxide coating on SUS441 to protect the metallic interconnect and to increase stability of SOFC cathode[J]. International journal of hydrogen energy, 2024, 50: 1273-1281. [2]Zhang, Lu; Hu, Xueyu; Huan, Daoming; Shi, Nai; Dong, Dehua; Xia, Changrong. Functionally Graded Infiltration Triggering Ultrahigh Electrolytic Current in Robust Reversible Solid Oxide Cells[J]. Small Structures, 2024, 5(4): 2300447. [3]Ma, Yumei; Zhang, Lijie; Zhu, Kang; Zhang, Binze; Peng, Ranran; Xia, Changrong; Huang, Ling. In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell[J]. Nano Research, 2024, 17(1): 407-415. [4]Zhang, Lijie; Jiang, Yunan; Zhu, Kang; Shi, Nai; Chen, Zhengguo; Peng, Ranran; Xia, Changrong. Fe-Doped SDC Solid Solution as an Electrolyte for Low-to-Intermediate-Temperature Solid Oxide Fuel Cells[J]. ACS Applied Materials & Interfaces, 2024. [5]Zhu, Kang; Zhang, Lijie; Shi, Nai; Qiu, Bingbing; Hu, Xueyu; Huan, Daoming; Xia, Changrong; Peng, Ranran, Lu, Yalin. A Superior Catalytic Air Electrode with Temperature-Induced Exsolution toward Protonic Ceramic Cells[J]. ACS nano, 2024, 18(6): 5141–5151. [6]Zhang, Lijie; Jiang, Yunan; Zhu, Kang; Shi, Nai; Rehman, Zohaib Ur; Peng, Ranran; Xia, Changrong. Fe‐Doped Ceria‐Based Ceramic Cathode for High‐Efficiency CO2 Electrolysis in Solid Oxide Electrolysis Cell[J]. Small Methods, 2024: 2301686. [7]Jiang, Yuyao; Huan, Daoming; Xia, Changrong. A robust tubular solid oxide fuel cell through bifunctional praseodymium oxide nanocatalyst infiltration[J]. Ceramics International, 2024, 50(7): 12489-12497. [8]Zhao, Yongtao; Jiang, Yunan; Zhang, Lijie; Chen, Yin; Su, Chang; Zheng, Kai; Huan, Daoming; Xia, Changrong. CuFe2O4 nano-spherical powder directly served as interconnect coating for solid oxide fuel cells applications[J]. Journal of Power Sources, 2024, 599: 234221. [9]Chen, Zhengguo; Zhao, Yongtao; Zhang, Binze; Rehman, Zohaib Ur; Zhang, Lijie; Jiang, Yunan; Xia, Changrong. Ni–Co spinel based oxide as new type of additive to glass seal for solid oxide fuel cells[J]. International journal of hydrogen energy, 2024, 68: 1261-1270. 2023 [1]Zhang, Binze; Zhang, Shaowei; Zhang, Zhen; Tang, Kaibin, Xia, Changrong. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode[J]. Journal of Power Sources, 2023, 556: 232467. [2]Zhang, Binze; Zhang, Shaowei; Han, Hairui; Tang, Kaibin, Xia, Changrong. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8253-8262. [3]Xie, Yun; Shi, Nai; Hu, Xueyu; Zhu, Kang; Peng, Ranran; Xia, Changrong, Chen, Ming. La-Doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ Air Electrodes with Enhanced Performance and Stability for Reversible Protonic Ceramic Cells[J]. Journal of The Electrochemical Society, 2023, 170(2): 024513. [4]Zhang, Lu; Huan, Daoming; Zhu, Zidi; Liu, Fangsheng; Dong, Dehua, Xia, Changrong. A coking-tolerance dendritic anode with exceptional power density toward direct ethanol-fueled solid oxide fuel cells[J]. Materials Today Energy, 2023, 34: 101290. [5]Liu, Xiaoye; Kong, Xiangkun; Xiang, Wenyi; Jiang, Yining; Xiong, Bingqinq; Ping, Weiwei; Xia, Changrong; Huan, Daoming, Wang, Chengwei. LiCoO2 sintering aid towards cathode-interface-enhanced garnet electrolytes[J]. Journal of Energy Chemistry, 2023, 84: 181-188. [6]Song, Rui; Zhang, Xiaoyu; Huan, Daoming; Li, Xinyu; Shi, Nai; Xia, Changrong; Peng, Ranran, Lu, Yalin. A novel triple-conductive cathode with high efficiency and stability for protonic ceramic fuel cells[J]. International journal of hydrogen energy, 2023, 48(84): 32943-32954. [7]Hana, Hairui; Jiang, Yunan; Zhanga, Shaowei, Xia, Changrong. Perspective on high-temperature surface oxygen exchange in porous mix-conducting ceramic for solid oxide cell[J]. Physical Chemistry Chemical Physics, 2023, 25: 12629-12640. [8]Zhao, Yongtao; Zhang, Shaowei; Su, Mingchao; Huan, Daoming; Peng, Ranran, Xia, Changrong. In-situ formed CuFe2O4 spinel coating by electroplating method for solid oxide fuel cell interconnect[J]. Chemical Engineering Journal, 2023, 470: 144397. [9]Qiu, Bingbing; Yang, Yi; Xue, Shuangshuang; Zhu, Kang; Wang, Lenan; Shi, Nai; Hu, Xueyu; Xia, Changrong; Peng, Ranran, Huang, Haoliang. Downward band bending as an efficient strategy to accelerate oxygen exchange kinetics in mixed conducting oxides-studies on different oriented LSCF thin films[J]. The Journal of Physical Chemistry C, 2023, 127(29): 14476-14485. [10]Zhang, Binze; Zhang, Zhen; Zhang, Lijie; Tang, Kaibin, Xia, Changrong. A perovskite infiltrated cathode of metal-supported solid oxide electrolysis cell for CO2 electrolysis[J]. International journal of hydrogen energy, 2024, 49: 417-423. [11]Li, Xinyu; Chen, Zemin; Huan, Daoming; Qiu, Bingbing; Zhu, Kang; Qi, Zeming; Liu, Hengjie; Xia, Changrong; Peng, Ranran, Lu, Yalin. Highly Active Cathode Achieved by Constructing Surface Proton Acid Sites through Electronic Regulation of Heteroatoms[J]. ACS Materials Letters, 2023, 5(11): 2896-2905. [12]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Peng, Ranran; Ding, Dong, Xia, Changrong. Improving Ruddlesden-Popper electrocatalysts through interstitial fluorination-driven rearrangements of local coordination environment[J]. Sustainable Materials and Technologies, 2023, 38: e00754. [13]Zhu, Kang; Shi, Nai; Zhang, Lijie; Huan, Daoming; Li, Xinyu; Zhang, Xiaoyu; Song, Rui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3[J]. Ceramics International, 2023, 49(9): 13321-13329. [14]Han, Hairui; Hu, Xueyu; Zhang, Binze; Zhang, Shaowei; Zhang, Yanxiang, Xia, Changrong. Method to determine the oxygen reduction reaction kinetics via porous dual-phase composites based on electrical conductivity relaxation[J]. Journal of Materials Chemistry A, 2023, 11(5): 2460-2471. [15]Ye, Lujuan; Zhu, Kang; Jiang, Yunan; Zhang, Shaowei; Peng, Ranran, Xia, Changrong. Carbon dioxide reduction processes on a samarium doped ceria electrocatalyst with exsolved Fe particles[J]. Journal of Materials Chemistry A, 2023, 11(20): 10646-10658. 2022 [1]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Zhang, Binze; Shi, Jialin; Peng, Ranran; Xia, Changrong. Tailoring the structural stability, electrochemical performance and CO2 tolerance of aluminum doped SrFeO3[J]. Separation and Purification Technology, 2022, 290: 120843. [2]Su, Taolong; Zhang, Tao; Xie, Hui; Zhong, Jianjun, Xia, Changrong. Investigation into structure and property of W and Ti co-doped SrFeO3 perovskite as electrode of symmetrical solid oxide fuel cell[J]. International journal of hydrogen energy, 2022, 47(36): 16272-16282. [3]Zhang, Lu; Huan, Daoming; Zhu, Kang; Dai, Pengqi; Peng, Ranran, Xia, Changrong. Tuning the phase transition of SrFeO3−δ by Mn toward enhanced catalytic activity and CO2 resistance for the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17358-17368. [4]Li, Xinyu; Chen, Zemin; Yang, Yi; Huan, Daoming; Su, Hui; Zhu, Kang; Shi, Nai; Qi, Zeming; Zheng, Xusheng; Pan, Haibin; Zhan, Zhongliang; Xia, Changrong; Peng, Ranran; Wei, Shiqiang, Lu, Yalin. Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells[J]. Applied Catalysis B: Environmental, 2022, 316. [5]Zhang, Shaowei; Jiang, Yunan; Han, Hairui; Li, Yihang, Xia, Changrong. Perovskite oxyfluoride ceramic with in situ exsolved Ni–Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28854-28864. [6]Heng, Zefeng; Wan, Yanhong, Xia, Changrong. Calcium stabilized La0.6Sr0.4Fe0.8Mn0.2O3-δ perovskite as ceramic fuel electrode for solid oxide cell[J]. Journal of Power Sources, 2022, 537: 231535. [7]Zhang, Shaowei; Yang, Chengyue; Jiang, Yunan; Li, Ping, Xia, Changrong. A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2023, 77: 300-309. [8]Zhang, Xiaoyu; Song, Rui; Huan, Daoming; Zhu, Kang; Li, Xinyu; Han, Hairui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Surface self-assembly protonation triggering triple-conductive heterostructure with highly enhanced oxygen reduction for protonic ceramic fuel cells[J]. Small, 2022, 18(49): 2205190. [9]张璐; 宦道明, 夏长荣. 固体氧化物燃料电池氧化物修饰镧锶钴铁阴极研究进展[J]. 陶瓷学报, 2022, 43(5): 799-814. [10]Zhu, Kang; Shi, Nai; Zhang, Lijie; Huan, Daoming; Li, Xinyu; Zhang, Xiaoyu; Song, Rui; Xia, Changrong; Peng, Ranran, Lu, Yalin. Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3[J]. Ceramics International, 2023, 49(9): 13321-13329. [11]Han, Hairui; Hu, Xueyu; Zhang, Binze; Zhang, Shaowei; Zhang, Yanxiang, Xia, Changrong. Method to determine the oxygen reduction reaction kinetics via porous dual-phase composites based on electrical conductivity relaxation[J]. Journal of Materials Chemistry A, 2023, 11(5): 2460-2471. [12]Ye, Lujuan; Zhu, Kang; Jiang, Yunan; Zhang, Shaowei; Peng, Ranran, Xia, Changrong. Carbon dioxide reduction processes on a samarium doped ceria electrocatalyst with exsolved Fe particles[J]. Journal of Materials Chemistry A, 2023, 11(20): 10646-10658. [13]Li, Ping; Xuan, Yimin; Jiang, Biao; Zhang, Shaowei, Xia, Changrong. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3-δ electrodes with exsolved FeNi3 in quasi-symmetrical solid oxide electrolysis cells for direct CO2 electrolysis[J]. Electrochemistry Communications, 2022, 134: 107188. [14]Jiang, Yunan; Ye, Lujuan; Zhang, Shaowei, Xia, Changrong. Doped ceria with exsolved Fe 0 nanoparticles as a Sr-free cathode for CO2 electrolysis in SOECs at reduced temperatures[J]. Journal of Materials Chemistry A, 2022, 10(17): 9380-9383. [15]Su, Mingchao; Huan, Daoming; Hu, Xueyu; Zhu, Kang; Peng, Ranran, Xia, Changrong. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells[J]. Journal of Power Sources, 2022, 521: 230907. [16]宦道明; 张璐; 彭冉冉, 夏长荣. 固体氧化物燃料电池无钴钙钛矿阴极材料SrFeO3-δ 的掺杂改性[J]. 陶瓷学报, 2022, 43(1): 1-12. [17]Wan, Yanhong; Yang, Yi; Lu, Yalin; Peng, Ranran, Xia, Changrong. A strategy to enhance the catalytic activity of electrode materials by doping bismuth for symmetrical solid oxide electrolysis cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2339-2348. 2021 [1]Zhang, Shaowei; Zhu, Kang; Hu, Xueyu; Peng, Ranran, Xia, Changrong. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6−δ perovskite as a ceramic anode for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(43): 24336-24347. [2]Hu, Xueyu; Xie, Yun; Wan, Yanhong; Yang, Yi; Wu, Xiaojun, Xia, Changrong. Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance[J]. Applied Catalysis B: Environmental, 2021, 286: 119901. [3]Shi, Nai; Xie, Yun; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang, Lu, Yalin. Infiltrated Ni0.08Co0.02CeO2–x@ Ni0.8Co0.2 catalysts for a finger-like anode in direct methane-fueled solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 4943-4954. [4]Jiang, Yunan; Wang, Shuang; Xu, Jun; Zheng, Minghao; Yang, Yi; Wu, Xiaojun, Xia, Changrong. Hydrogen Oxidation Pathway Over Ni–Ceria Electrode: Combined Study of DFT and Experiment[J]. Frontiers in Chemistry, 2021, 8: 591322. [5]Xia, Yuling; Guo, Kaili; Hu, Bobing; Peng, Ranran, Xia, Changrong. Gold particle effect on high temperature oxygen reduction reaction via lanthanum strontium cobaltite ferrite electrocatalyst[J]. Electrochemistry Communications, 2021, 126: 107027. [6]Jiang, Yunan; Chen, Fanglin, Xia, Changrong. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2021, 493: 229713. [7]Yang, Yi; Shi, Nai; Xie, Yun; Li, Xinyu; Hu, Xueyu; Zhu, Kang; Huan, Daoming; Peng, Ranran; Xia, Changrong, Lu, Yalin. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells[J]. Electrochimica Acta, 2021, 389: 138453. [8]Huan, Daoming; Zhang, Lu; Zhu, Kang; Li, Xinyu; Shi, Nai; Yang, Yi; Xia, Changrong; Xie, Yun, Peng, Ranran. Oxygen vacancy-engineered cobalt-free Ruddlesden-Popper cathode with excellent CO2 tolerance for solid oxide fuel cells[J]. Journal of Power Sources, 2021, 497: 229872. [9]Xie, Yun; Hu, Xueyu; Shi, Nai; Peng, Ranran; Chen, Ming, Xia, Changrong. La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-d as cathode for protonic-conducting solid oxide fuel cells with enhanced structure stability[J]. ECS Transactions, 2021, 103(1): 1525. [10]Zhu, Kang; Yang, Yi; Huan, Daoming; Hu, Xueyu; Shi, Nai; Xie, Yun; Li, Xinyu; Xia, Changrong; Peng, Ranran, Lu, Yalin. Theoretical and Experimental Investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2021, 14(18): 3876-3886. [11]Zhang, Binze; Wan, Yanhong; Hua, Zihui; Tang, Kaibin, Xia, Changrong. Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells[J]. ACS Applied Energy Materials, 2021, 4(8): 8401-8409. [12]Zhang, Lijie; Li, Yihang; Zhang, Binze; Wan, Yanhong; Xu, Zheqiang; Zhang, Shaowei; Zhu, Tenglong, Xia, Changrong. (La,Sr)(Ti,Fe)O3−δ perovskite with in‐situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. International Journal of Energy Research, 2021, 45(15): 21264-21273. [13]Li, Ping; Xuan, Yimin; Jiang, Biao; Zhang, Shaowei, Xia, Changrong. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3-δ electrodes with exsolved FeNi3 in quasi-symmetrical solid oxide electrolysis cells for direct CO2 electrolysis[J]. Electrochemistry Communications, 2022, 134: 107188. [14]Jiang, Yunan; Ye, Lujuan; Zhang, Shaowei, Xia, Changrong. Doped ceria with exsolved Fe 0 nanoparticles as a Sr-free cathode for CO2 electrolysis in SOECs at reduced temperatures[J]. Journal of Materials Chemistry A, 2022, 10(17): 9380-9383. [15]Su, Mingchao; Huan, Daoming; Hu, Xueyu; Zhu, Kang; Peng, Ranran, Xia, Changrong. Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells[J]. Journal of Power Sources, 2022, 521: 230907. [16]宦道明; 张璐; 彭冉冉, 夏长荣. 固体氧化物燃料电池无钴钙钛矿阴极材料SrFeO3-δ 的掺杂改性[J]. 陶瓷学报, 2022, 43(1): 1-12. [17]Wan, Yanhong; Yang, Yi; Lu, Yalin; Peng, Ranran, Xia, Changrong. A strategy to enhance the catalytic activity of electrode materials by doping bismuth for symmetrical solid oxide electrolysis cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2339-2348. 2020 [1]Huan, Daoming; Zhang, Lu; Li, Xinyu; Xie, Yun; Shi, Nai; Xue, Shuangshuang; Xia, Changrong; Peng, Ranran, Lu, Yalin. A Durable Ruddlesden‐Popper Cathode for Protonic Ceramic Fuel Cells[J]. ChemSusChem, 2020, 13(18): 4994-5003. [2]Zhang, Yanxiang; Yan, Fuyao; Hu, Bobing; Xia, Changrong, Yan, Mufu. Chemical relaxation in porous ionic–electronic conducting materials represented by the distribution of characteristic times[J]. Journal of Materials Chemistry A, 2020, 8(34): 17442-17448. [3]Nadeem, Mubashar; Li, Yihang; Bouwmeester, Henny JM, Xia, Changrong. PbO effect on the oxygen reduction reaction in intermediate-temperature solid oxide fuel cell[J]. International journal of hydrogen energy, 2020, 45(46): 25299-25306. [4]Yang, Yi; Wang, Shuang; Jiang, Yunan; Wu, Xiaojun; Xia, Changrong; Peng, Ranran, Lu, Yalin. CO2 activation and reduction on Pt-CeO2-based catalysts[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17092-17101. [5]Su, Taolong; Li, Yihang; Yang, Yi; Xu, Zheqiang; Shi, Nai; Wan, Yanhong; Xie, Yun; Huan, Daoming; Xue, Shuangshuang, Xia, Changrong. Effect of tungsten doping on strontium ferrite electrode for symmetrical solid oxide electrochemical cell[J]. International journal of hydrogen energy, 2020, 45(43): 23401-23410. [6]Li, Xinyu; Huan, Daoming; Shi, Nai; Yang, Yi; Wan, Yanhong; Xia, Changrong; Peng, Ranran, Lu, Yalin. Defects evolution of Ca doped La2NiO4+δ and its impact on cathode performance in proton-conducting solid oxide fuel cells[J]. International journal of hydrogen energy, 2020, 45(35): 17736-17744. [7]Zhang, Shaowei; Wan, Yanhong; Xu, Zheqiang; Xue, Shuangshuang; Zhang, Lijie; Zhang, Binze, Xia, Changrong. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(23): 11553-11563. [8]Shi, Nai; Xue, Shuangshuang; Xie, Yun; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran; Xia, Changrong; Zhan, Zhongliang, Lu, Yalin. Co-generation of electricity and olefin via proton conducting fuel cells using (Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layers[J]. Applied Catalysis B: Environmental, 2020, 272: 118973. [9]Yang, Jie; Wang, Lihong; Jiang, Xuexin, Xia, Changrong. AlN nanoparticles prepared through a gelation-polymerization process[J]. Ceramics International, 2020, 46(11): 17486-17494. [10]Xie, Yun; Shi, Nai; Hu, Xueyu; Liu, Minqian; Yang, Yi; Huan, Daoming; Pan, Yang; Peng, Ranran, Xia, Changrong. Novel in-situ MgO nano-layer decorated carbon-tolerant anode for solid oxide fuel cells[J]. International journal of hydrogen energy, 2020, 45(20): 11791-11801. [11]Xu, Zheqiang; Hu, Xueyu; Wan, Yanhong; Xue, Shuangshuang; Zhang, Shaowei; Zhang, Lijie; Zhang, Binze, Xia, Changrong. Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells[J]. Electrochimica Acta, 2020, 341: 136067. [12]Shi, Nai; Xie, Yun; Yang, Yi; Xue, Shuangshuang; Li, Xinyu; Zhu, Kang; Huan, Daoming; Peng, Ranran; Xia, Changrong, Lu, Yalin. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability[J]. Materials for Renewable and Sustainable Energy, 2020, 9: 1-18. [13]Nadeem, Mubashar; Wan, Yanhong, Xia, Changrong. The effect of group IIIA oxides on the oxygen reduction reaction at cathodes for intermediate-temperature solid oxide fuel cells[J]. Composites Part B: Engineering, 2020, 189: 107924. [14]Wan, Yanhong; Xing, Yulin; Xu, Zheqiang; Xue, Shuangshuang; Zhang, Shaowei, Xia, Changrong. A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells[J]. Applied Catalysis B: Environmental, 2020, 269: 118809. [15]Ru, Yanlei; Sang, Junkang; Xia, Changrong; Wei, Wen-Cheng J, Guan, Wanbing. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes[J]. International journal of hydrogen energy, 2020, 45(11): 7069-7076.