胡岩
研究员
所属大学: 中国科学技术大学
所属学院: 地球和空间科学学院
个人简介
教育经历 2004年和2011年分别获加拿大维多利亚大学固体地球物理硕士及博士学位 2004年和2011年分别获加拿大维多利亚大学固体地球物理硕士及博士学位 工作经历 2004.07 – 2005.05, 加拿大地质调查局太平洋研究中心( Pacific Geoscience Centre, Geological Survey of Canada (PGC-GSC)),研究助理 2005.06,美国“乡村教育促进会”和人民大学新农村研究中心共同组织的支农支教活动 2005.07 – 2005.12, 国家地震局预测研究所,研究助理 2011.05 – 2012.01, 加拿大维多利亚大学(University of Victoria),助理研究员 2012.02 – 2012.12, 美国阿拉斯加大学费尔班克斯分校(University of Alaska Fairbanks),博士后 2013.01 – 2016.08, 美国加州大学伯克利分校(University of California Berkeley),博士后 2016.09 – 至今, 中国科学技术大学,特任研究员 获奖信息 赵九章优秀中青年科学奖国家级, ”张宗植“青年教师奖校级, 2017年中科大地空学院“公共服务”奖 2009年获维多利亚大学“Albert Huang Chao Hong ”奖学金 2008年中国国家留学基金委颁发“优秀自费留学生”奖学金 2007年加拿大自然科学和工程委员会(NSERC)颁发“加拿大博士奖学金” (CGS D) 1998年北京市高等学校优秀学生(索尼)奖学金 1997,1998年北京大学“学习优秀”奖 1995年麻阳县考入北大学习优秀奖
研究领域
岩石圈和上地幔结构及性质 地震周期地壳形变模式和动力学过程 大地测量观测方法及其数据处理 地表物质迁移(冰、沉积物)观测及其模拟 理想弹塑性楔形体理论 有限元数值模拟方法
近期论文
(01) Wang, K., Hu, Y., & Zhang, J. (2024). Rheological structure and stress triggered megathrust slip constrained from the 2016 Mw 7.8 Kaikōura crustal earthquake. Journal of Geophysical Research: Solid Earth, 129, e2024JB029017. https://doi.org/10.1029/2024JB029017 (02) Wang, Kai, Xu, Xiaohua, Hu, Yan (2024). Kinematics of the 2023 Kahramanmaraş Earthquake Doublet: Biased Near‐Fault Data and Shallow Slip Deficit. Seismological Research Letters, 2024. https://doi.org/10.1785/0220240062 (03) Yang, Siyuan, Hu, Yan, & Zhang, Jian (2024). Mantle wedge heterogeneities and afterslip distribution following the 2004 Mw9.2 and 2005 Mw8.6 Sumatra earthquakes. Seismological Research Letters, 2024. https://doi.org/10.1785/0220230382 (04) Yang, Siyuan, Sang, Chengfang, Hu, Yan, & Wang, Kai (2024). Coseismic and early postseismic deformation of the 2024 Mw7.45 Noto Peninsula earthquake. Geophysical Research Letters, 51, e2024GL108843. https://doi.org/10.1029/2024GL108843 (05) Liu, Yiqing, Cui, Xin, Hu, Yan, Zhang, Jian, & Chen, Yunguo (2024). Integrated investigation on heterogeneous lower crust rheology in Kyushu and afterslip behavior following the 2016 Mw7.1 Kumamoto earthquake. Geophysical Research Letters, 51, e2023GL107606. https://doi.org/10.1029/2023GL107606 (06) 路瑞鹏, 高勇, 胡岩, 等(2024). 从地震到星震. 中国科学: 物理学 力学 天文学, 54, 289501. https://doi.org/10.1360/SSPMA-2023-0424 (07) Zhang, Jian, Hu, Yan, Wang, Kai, & Yang, Siyuan (2024). Rheological structure and lithospheric stress interaction in the Alaska subduction zone gleaned from the 2018 Mw 7.9 oceanic crustal earthquake. Journal of Geophysical Research: SolidEarth, 129, e2023JB027864. https://doi.org/10.1029/2023JB027864. (08) Zhang, Jian, Hu, Yan, Zhao, Bin, & Chen, Yunguo (2023). Weakness of the Indian lower crust beneath the Himalaya inferred from postseismic deformation of the 2015 Mw 7.8 Gorkha earthquake. Journal of Geophysical Research: Solid Earth, 128, e2023JB027119. https://doi.org/10.1029/2023JB027119. (09) Shenghong Huang, Junshi Chen, Ziyu Zhang, Xiaoyu Hao, Jun Gu, Zhanming Wang, Hong An, Chun Zhao, Yan Hu, Longkui Chen, Yifan Luo, Jineng Yao, Yi Zhang, Yang Zhao, Zhihao Wang, Dongning Jia, Zhao Jing, Changming Song, Xisheng Luo, Xiaobin He, and Dexun Chen. 2023. Establishing a Modeling System in 3-km Horizontal Resolution for Global Atmospheric Circulation triggered by Submarine Volcanic Eruptions with 400 Billion Smoothed Particle Hydrodynamics. In The International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3581784.3627045 (10) Cui, Xin, Zefeng Li, and Yan Hu (2023), Similar seismic moment release process for shallow and deep earthquakes, Nature Geoscience, 16, 454-460, doi: 10.1038/s41561-023-01176-5. (11) Liu, D., Z. Wang, G. Fu, X. Liang, Y. Yao, Y. Hu, and J. Li (2022), Crustal density structure and flexure mechanism of the Tarim Basin, China, constrained by latest in situ gravity observations, Terra Nova, 00, 1–8. https://doi.org/10.1111/ter.12632. (12) Zhao, B., R. Bürgmann, D. Wang, J. Zhang, J. Yu and Q. Li (2022), Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone, Nature Communications, 13, 3098, https://doi.org/10.1038/s41467-022-30883-7. (13) Chen, Y., Y. Hu, L. Qian, and G. Meng (2022), Early postseismic deformation of the 2010 Mw 6.9 Yushu earthquake and its implication for lithospheric rheological properties, Geophysical Research Letters, 49, e2022GL098942, doi:10.1029/2022GL098942. (14) 胡岩 (2022),俯冲带库仑楔形体力学,地球物理学报,65(2),417-426,doi:10.6038/cjg2022P0894. (15) Hu, Z., Y. Hu, and S.S. Bodunde (2021), Viscoelastic relaxation of the upper mantle and afterslip following the 2014 Mw8.1 Iquique earthquake, Earthquake Research Advances, 1, dot:10.19743/j.cnki.0891-4176.202101003. (16) 张懿行, 胡岩, Segun Steven Bodunde (2021), 2010年Mw8.8 Maule 地震震后形变三维粘弹性数值模拟, 地震学报[J], doi: 10.11939/jass.20200071. (this paper was selected as Outstanding Student Paper:) (17) Huang, K., Hu, Y., & Freymueller, J. T. (2020). Decadal viscoelastic postseismic deformation of the 1964 Mw9.2 Alaska earthquake. Journal of Geophysical Research: Solid Earth, 125, e2020JB019649. https://doi.org/10.1029/2020JB019649. (18) 赵斌, 王敏, 胡岩, 王琪 (2020), 中国及邻域强震震后变形监测及岩石流变性质研究, 中国地震, 36(4), 806-816. (19) Hu, Y., and J.F. Freymueller (2019), Geodetic observations of time-variable Glacial Isostatic Adjustment in southeast Alaska and its implications for Earth rheology, J. Geophys. Res. Solid Earth, 124, doi:10.1029/2018JB017028. (20) Wang, K., L. Brown, Y. Hu, K. Yoshida, J. He, and T. Sun (2019), Stable forearc stressed by a weak megathrust: Mechanical and geodynamic implications of stress changes caused by the M=9 Tohoku-oki earthquake, J. Geophys. Res. Solid Earth, 124, doi:10.1029/2018JB017043. (21) Hu, Y., R. Bürgmann, P. Banerjee, L. Feng, E.M. Hill, T. Ito, T. Tabei, & K. Wang (2016), Oceanic asthenosphere rheology from postseismic deformation of the 2012 Indian Ocean earthquake, Nature, 538, 368–372, doi:10.1038/nature19787. (22) Hu, Y., R. Bürgmann, N. Uchida, P. Banerjee, & J.T. Freymueller (2016), Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012508. (23) Bürgmann, R., N. Uchida, Y. Hu, & T. Matsuzawa (2016), Tohoku rupture reloaded? Nat. Geosci., 9, 183-184, doi:10.1038/ngeo2649. (24) Hu, Y., R. Bürgmann, J.T. Freymueller, P. Banerjee, & K. Wang (2014), Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake, Earth Planets Space, 66, 106, doi:10.1186/1880-5981-66-106. (25) Shirzaei, M., R. Burgmann, N. Uchida, Y. Hu, F. Pollitz, & T. Matsuzawa (2014), Seismic versus aseismic slip: Probing mechanical properties of the northeast Japan subduction zone, Earth Planet. Sci. Lett., 406, 7-13, doi:10.1016/j.epsl.2014.08.035. (26) Sun, T., K. Wang, T. Iinuma, R. Hino, J. He, H. Fujimoto, M. Kido, Y. Osada, & Y. Hu (2014), Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84–87, doi:10.1038/nature13778. (27) Hu, Y., & K. Wang (2012), Spherical-Earth finite element model of short-term postseismic deformation following the 2004 Sumatra earthquake, J. Geophys. Res., 117(B5), B05404, doi:10.1029/2012JB009153. (28) Wang, K., Y. Hu, & J. He (2012), Deformation cycles of subduction earthquakes in a viscoelastic Earth, Nature, 484, 327-332, doi:10.1038/nature11032. (29) Wang, K., Y. Hu, R. von Huene, & N. Kukowski (2010), Interplate earthquakes as a driver of shallow subduction erosion, Geology, 38(5), 431-434, doi: 10.1130/G30597.1. (30) Wang, K., Y. Hu, & J. He (2009), Wedge mechanics: Relation with subduction zone earthquakes and tsunamis, in Encyclopedia of complexity and system science, Volume x, edited by R. Meyers, Springer, New York. (31) Hu, Y., & K. Wang (2008), Coseismic strengthening of the shallow portion of the subduction fault and the effects on the frontal prism taper, J. Geophys. Res., 113(B12), B12411, doi:10.1029/2008JB005724. (32) Wang, K., Y. Hu, M. Bevis, E. Kendrick, R. Smalley Jr., R.B. Vargas, & E. Lauría (2007), Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation, G3, 8(10), Q10010, doi:10.1029/2007GC001721. (33) Hu, Y., & K. Wang (2006), Bending-like behavior of thin wedge-shaped elastic fault blocks, J. Geophys. Res., 111(B6), B06409, doi:10.1029/2005JB003987. (34) Wang, K., & Y. Hu (2006), Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, J. Geophys. Res., 111(B6), B06410, doi:10.1029/2005JB004094. (35) Wang, K., J. He, & Y. Hu (2006), A note on pore fluid pressure ratios in the Coulomb wedge theory, Geophys. Res. Lett., 33(19), L19310, doi:10.1029/2006GL027233. (36) Hu, Y., K. Wang, J. He, J. Klotz, & G. Khazaradze (2004), Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake, J. Geophys. Res., 109(B12), B12403, doi:10.1029/2004JB003163. (37) Khazaradze, G., K. Wang, J. Klotz, Y. Hu, and J. He (2002), Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology, Geophys. Res. Lett., 29(22), 2050, doi:10.1029/2002GL015986.