江国乾 照片

江国乾

副教授 博导

所属大学: 燕山大学

所属学院: 电气工程学院

邮箱:
jiangguoqian@ysu.edu.cn

个人主页:
http://web.ysu.edu.cn/jiang/zh_CN/index.htm

个人简介

教育经历 2011.9- 2017.12 燕山大学 控制科学与工程 博士研究生 博士 2015.9- 2017.3 美国罗德岛大学 电气工程 联合培养博士 2007.9- 2011.7 燕山大学 测控技术与仪器 本科 学士 工作经历 2018.6- 至今 燕山大学 电气工程学院

研究领域

[1].医工交叉智能计算 [2].多模态人机智能交互 [3].深度学习与智能系统应用 [4].可解释、可信故障诊断 [5].工业大数据与工业人工智能 [6].风电大数据智能监测、诊断预测与健康管理

近期论文

何群.江国乾,谢平.基于电流信号稀疏滤波特征融合的齿轮箱故障诊断方法.2020 李继猛.张金凤,江国乾.Frequency-shift multiscale noise tuning stochastic resonance method for fault diagnosis of generator bearing in wind turbine.2019 李继猛.何群,谢平,江国乾.同步压缩-交叉小波变换及滚动轴承故障特征增强.2018[4] 江国乾.何群,谢平.一种负荷突变情况下异步电机转子断条故障在线检测新方法.2018 王霄.谢平,何群,江国乾.基于多字典-共振稀疏分解的脉冲故障特征提取.2019 江国乾.孟宗,何群,谢平.Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach.IEEE.2019 胡丽.单锐,赵静一,江国乾,王芳(信息与计算科学系).基于双通道空洞卷积神经网络的高光谱图像分类.2020 何群.谢平,江国乾.基于长短期记忆网络的风电机组齿轮箱故障预测.2020 武鑫.谢平,李小俚,江国乾.A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault Detection.2019 何群.江国乾,谢平.Classification of motor imagery based on single-channel frame and multi-channel frame.2018 何群.谢平,江国乾,李继猛.基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究.2018 江国乾.谢平.Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis.2017 徐淳瑶.江国乾,孙超,陈晓玲,何群,谢平.Two-level multi-domain feature extraction on sparse representation for motor imagery classification.2020 何群.江国乾,谢平.基于改进MEDA算法的脑电情绪识别.2021[15] 谢平.何群,江国乾.M2FN: An end-to-end multi-task and multi-sensor fusion network for intelligent fault diagnosis.2022 江国乾.何群,谢平,李文悦.TempGNN: A Temperature-based Graph Neural Network Model for System-level Monitoring of Wind Turbines with SCADA Data.2022 何群.谢平,江国乾.Multimodal Multitask Neural Network for Motor Imagery Classification With EEG and fNIRS Signals.2022 江国乾.何群,谢平.Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network.2022 江国乾.A Multimodal Approach for Identifying Autism Spectrum Disorders in Children.2022 江国乾.李小俚,何群,李文悦,谢平.DeepFedWT: A federated deep learning framework for fault detection of wind turbines.2022 江国乾.陈琦,谢平,何群.Dual residual attention network for remaining useful life prediction of bearings.2022 江国乾.谢平,何群.Multiview enhanced fault diagnosis for wind turbine gearbox bearings with fusion of vibration and current signals.2022 江国乾.李小俚,谢平,李英伟.Multiscale One-Class Classification Network for Machine Health Monitoring.2022 江国乾.谢平.Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox.2019 江国乾.谢平.Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information.2018