段乐乐
副教授
所属大学: 西湖大学
所属学院: 理学院
个人简介
段乐乐,祖籍河南焦作,本科和硕士毕业于大连理工大学,2011年获瑞典皇家工学院有机化学专业博士学位(导师孙立成院士)。2012年至2015年期间在瑞典皇家理工学院孙立成课题组、美国布鲁克海文国家实验室Fujita课题组从事博士后研究。2015年任瑞典皇家工学院助理教授,2017年加入南方科技大学化学系并于2022年获得长聘副教授职位。2023年加盟西湖大学人工光合作用与太阳能燃料中心,担任长聘副教授和特聘研究员,研究兴趣集中在表面配位化学和能源催化领域。近年来取得了一些重要的研究成果,发表在Nature Chemistry、J. Am. Chem. Soc.、Angew. Chem. Int. ed.、 P. Natl. Acad. Sci. USA、Energy Environ. Sci.、Accounts of Chemical Research等国际学术期刊上。 工作背景 2013.11-现在 特聘研究员/长聘副教授(Associate Professor),西湖大学,中国杭州 2017.01-2023.08(Associate Professor),南方科技大学,中国深圳 2015.08-2016.12 助理教授(Assistant Professor),瑞典皇家工学院,瑞典 2014.08-2015.07 研究员(Staff Researcher),瑞典皇家工学院,瑞典 2013.06-2014.07 研究助理(Etsuko Fujita课题组),布鲁克黑文国家实验室,美国 2012.01-2013.05 博士后(孙立成课题组),瑞典皇家工学院,瑞典 教育背景 2007.09 – 2011.10 博士(导师孙立成教授),瑞典皇家工学院,瑞典 2004.09 – 2007.06 硕士(导师王梅教授),大连理工大学,中国大连 2000.09 – 2004.06 本科(精细化工),大连理工大学,中国大连
研究领域
(1)电催化剂的设计合成、性能优化和反应机理研究 (2)碱性膜电极电解水器件关键材料的开发 (3)石墨炔基碳载体材料的宏量制备
近期论文
101. Su, Z. Y.; Wu, J. P.; Song, T.; Duan, L. L.; Zhang, P. L.; Sun, L. C.; Fan, K. Regulating oxygen vacancy distribution in perovskites via A-site cation engineering for water oxidation. J. Mater. Chem. A 2025, 13 (4), 2789-2800. DOI: 10.1039/d4ta07345b. 100. Zou, H.; Shu, S.; Yang, W.; Chu, Y.-c.; Cheng, M.; Dong, H.; Liu, H.; Li, F.; Hu, J.; Wang, Z.; et al. Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect. Nat. Commun. 2024, 15 (1), 10818. DOI: 10.1038/s41467-024-55116-x. 99. Zou, H.; Cheng, D.; Tang, C.; Luo, W.; Xiong, H.; Dong, H.; Li, F.; Song, T.; Shu, S.; Dai, H.; et al. Electronic perturbation of Cu nanowire surfaces with functionalized graphdiyne for enhanced CO2 reduction reaction. Natl. Sci. Rev. 2024, nwae253. DOI: 10.1093/nsr/nwae253 (acccessed 10/20/2024). 98. Yang, J.; Zhan, S. Q.; Wang, L. Q.; Yang, H.; Duan, L. L.; Fan, X. L.; Liu, T. Q.; Sun, L. C. Adaptive water oxidation catalysis on a carboxylate-sulfonate ligand with low onset potential. Chem. Commun. 2024, 60 (48), 6162-6165. DOI: 10.1039/d4cc02303j. 97. Song, T.; Liu, H.; Zou, H.; Wang, C.; Shu, S.; Dai, H.; Duan, L. Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives. Angew. Chem. Int. Ed. 2024, 63 (50), e202411228. DOI: https://doi.org/10.1002/anie.202411228. 95. Luo, S. Y.; Zou, H. Y.; Zheng, R. J.; Deng, S. M.; Feng, X. Z.; Wei, W. F.; Wang, R. H.; Li, Z.; Xu, W.; Duan, L. L.; et al. Charge-ordered Cu+/Cu2+pair regulated highly-selective electroreduction of carbon monoxide to acetate. Applied Catalysis B-Environment and Energy 2024, 349. DOI: 10.1016/j.apcatb.2024.123887. 94. Jia, Y. F.; Li, D. K.; Liu, C.; Song, T.; Duan, L. L.; Li, F. S.; Li, F.; Ji, Y. F.; Sun, L. C.; Fan, K. Regulating Cu Oxidation State for Electrocatalytic CO2 Conversion into CO with Near-Unity Selectivity via Oxygen Spillover. Small 2024, 20 (37). DOI: 10.1002/smll.202402537. 93. Fang, W. S.; Guo, W.; Lu, R. H.; Yan, Y.; Liu, X. K.; Wu, D.; Li, F. M.; Zhou, Y. S.; He, C. H.; Xia, C. F.; et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 2024, 626 (7997), 86-+. DOI: 10.1038/s41586-023-06917-5. 92. Dai, H.; Song, T.; Yue, X.; Wei, S.; Li, F.; Xu, Y.; Shu, S.; Cui, Z.; Wang, C.; Gu, J.; et al. Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4. Chin. J. Catal. 2024, 64, 123-132. DOI: https://doi.org/10.1016/S1872-2067(24)60106-3. 91. Chen, B. T.; Zou, H. Y.; Gong, L.; Zhang, H.; Li, N.; Pan, H. H.; Wang, K.; Yang, T.; Liu, Y. P.; Duan, L. L.; et al. Molecular engineering of dispersed tin phthalocyanine on carbon nanotubes for selective CO2 reduction to formate. Applied Catalysis B-Environment and Energy 2024, 344. DOI: 10.1016/j.apcatb.2023.123650. 90. Contributors to the Inorganic Chemistry Frontiers Emerging Investigator Series 2022–2023. Inorganic Chemistry Frontiers 2024, 11 (9), 2521-2526, 10.1039/D4QI90021A. DOI: 10.1039/D4QI90021A. 89. Zou, H. Y.; Arachchige, L. J.; Dai, H.; Liu, H.; Jiao, F. F.; Hu, W.; Li, F.; Wei, S. T.; Sun, C. H.; Duan, L. L. Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem Catalysis 2023, 3 (4), 100617. DOI: 10.1016/j.checat.2023.100583. 88. Zou, H.; Zhao, G.; Dai, H.; Dong, H.; Luo, W.; Wang, L.; Lu, Z.; Luo, Y.; Zhang, G.; Duan, L. Electronic Perturbation of Copper Single-Atom CO(2) Reduction Catalysts in a Molecular Way. Angew. Chem. Int. Ed. Engl. 2023, 62 (6), e202217220. DOI: 10.1002/anie.202217220. 87. Zhou, D. H.; Li, F. S.; Zhao, Y. L.; Wang, L. Q.; Zou, H. Y.; Shan, Y.; Fu, J. W.; Ding, Y. X.; Duan, L. L.; Liu, M.; et al. Mechanistic Regulation by Oxygen Vacancies in Structural Evolution Promoting Electrocatalytic Water Oxidation. ACS Catal. 2023, 13 (7), 4398-4408. DOI: 10.1021/acscatal.2c06339. 86. Wu, Q. L.; Liu, C. W.; Su, X. Z.; Yang, Q.; Wu, X. T.; Zou, H. Y.; Long, B. H.; Fan, X. K.; Liao, Y. J.; Duan, L. L.; et al. Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window. ACS Nano 2023, 17 (1), 402-410. DOI: 10.1021/acsnano.2c08768. 85. Rong, W.; Zou, H.; Tan, S.; Hu, E.; Li, F.; Tang, C.; Dai, H.; Wei, S.; Ji, Y.; Duan, L. Few-Atom Copper Catalyst for the Electrochemical Reduction of CO to Acetate: Synergetic Catalysis between Neighboring Cu Atoms. CCS Chem. 2023, 5 (5), 1176-1188. DOI: doi:10.31635/ccschem.022.202201910. 84. Liu, H.; Zou, H.; Wang, D.; Wang, C.; Li, F.; Dai, H.; Song, T.; Wang, M.; Ji, Y.; Duan, L. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single-Atom Gold Catalyst Supported on Amino-Substituted Graphdiyne. Angew. Chem. Int. Ed. Engl. 2023, 62 (11), e202216739. DOI: 10.1002/anie.202216739. 83. Jia, Y. F.; Ding, Y. X.; Song, T.; Xu, Y. L.; Li, Y. Q.; Duan, L. L.; Li, F.; Sun, L. C.; Fan, K. Dynamic Surface Reconstruction of Amphoteric Metal (Zn, Al) Doped Cu2O for Efficient Electrochemical CO2 Reduction to C2+ Products. Advanced Science 2023, 10 (28). DOI: 10.1002/advs.202303726. 82. Hu, J.; Zou, H.; Li, F.; Wei, S.; Cheng, M.; Dai, H.; Song, T.; Duan, L. Review on Electrochemical Reduction of Nitrogen by Graphdiyne-Based Catalysts: Recent Advances and Outlook. Energy & Fuels 2023, 37 (5), 3501-3522. DOI: 10.1021/acs.energyfuels.2c04028. 81. Deng, S. M.; Wang, R. H.; Feng, X. Z.; Zheng, R. J.; Gong, S. K.; Chen, X. H.; Shangguan, Y. Z.; Deng, L. L.; Tang, H.; Dai, H.; et al. Dual Lewis Acid-Base Sites Regulate Silver-Copper Bimetallic Oxide Nanowires for Highly Selective Photoreduction of Carbon Dioxide to Methane. Angew. Chem. Int. Edit. 2023, 62 (39). DOI: 10.1002/anie.202309625. 80. Dai, H.; Zou, H. Y.; Song, T.; Gao, L.; Wei, S. T.; Liu, H.; Xiong, H. T.; Huang, C. S.; Duan, L. L. Pyridyl-containing graphdiyne stabilizes sub-2 nm ultrasmall copper nanoclusters for the electrochemical reduction of CO2. Inorganic Chemistry Frontiers 2023, 10 (7), 2189-2196. DOI: 10.1039/d2qi02671f. 79. Chen, Z. J.; Zheng, R. J.; Zou, H. Y.; Wang, R. H.; Huang, C. Z.; Dai, W.; Wei, W.; Duan, L. L.; Ni, B. J.; Chen, H. Amorphous iron-doped nickel boride with facilitated structural reconstruction and dual active sites for efficient urea electrooxidation. Chem. Eng. J. 2023, 465. DOI: 10.1016/j.cej.2023.142684. 78. Zou, W. S.; Li, J.; Wang, R. H.; Ma, J. Y.; Chen, Z. J.; Duan, L. L.; Mi, H. W.; Chen, H. Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery. J. Hazard. Mater. 2022, 431. DOI: 10.1016/j.jhazmat.2022.128590. 77. Zou, H.; Arachchige, L. J.; Rong, W.; Tang, C.; Wang, R.; Tan, S.; Chen, H.; He, D.; Hu, J.; Hu, E.; et al. Low‐Valence Metal Single Atoms on Graphdiyne Promotes Electrochemical Nitrogen Reduction via M‐to‐N2 π‐Backdonation. Adv. Funct. Mater. 2022, 32 (24), 2200333. DOI: 10.1002/adfm.202200333. 76. Wang, R. H.; Zou, H. Y.; Zheng, R. J.; Feng, X. Z.; Xu, J. Y.; Shangguan, Y. Z.; Luo, S. Y.; Wei, W. F.; Yang, D. Z.; Luo, W.; et al. Molecular Dynamics Beyond the Monolayer Adsorption as Derived from Langmuir Curve Fitting. Inorg. Chem. 2022, 61 (20), 7804-7812. DOI: 10.1021/acs.inorgchem.2c00301. 75. Shangguan, Y.; Zheng, R.; Ge, Q.; Feng, X.; Wang, R.; Zhou, Y.; Luo, S.; Duan, L.; Lin, J.; Chen, H. Interfacial engineering of CuFeS2 quantum dots via platinum decoration with enhanced Cr(VI) reduction dynamics under UV-Vis-NIR radiation. J. Hazard. Mater. 2022, 421, Article. DOI: 10.1016/j.jhazmat.2021.126701. 74. Liu, H.; Zou, H.; Wang, M.; Dong, H.; Wang, D.; Li, F.; Dai, H.; Song, T.; Wei, S.; Ji, Y.; et al. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. Small 2022, 18 (45), e2203442. DOI: 10.1002/smll.202203442. 73. Feng, X.; Zou, H.; Zheng, R.; Wei, W.; Wang, R.; Zou, W.; Lim, G.; Hong, J.; Duan, L.; Chen, H. Bi2O3/BiO2 Nanoheterojunction for Highly Efficient Electrocatalytic CO2 Reduction to Formate. Nano Lett. 2022, 22 (4), 1656-1664, Journal Article. DOI: 10.1021/acs.nanolett.1c04683. 71. Fan, K.; Zou, H.; Ding, Y.; Dharanipragada, N. V. R. A.; Fan, L.; Inge, A. K.; Duan, L.; Zhang, B.; Sun, L. Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation. SMALL 2022, e2107249, Article 70. Zhuo, Q.; Zhan, S.; Duan, L.; Liu, C.; Wu, X.; Ahlquist, M. S. G.; Li, F.; Sun, L. Tuning the O-O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering. Chin. J. Catal. 2021, 42 (3), 460-469, Article. DOI: 10.1016/S1872-2067(20)63671-3. 69. Zhang, B. B.; Zhan, S. Q.; Liu, T. Q.; Wang, L. Q.; Inge, A. K.; Duan, L. L.; Timmer, B. J. J.; Kravchenko, O.; Li, F.; Ahlquist, M. S. G.; et al. Switching O-O bond formation mechanism between WNA and I2M pathways by modifying the Ru-bda backbone ligands of water-oxidation catalysts. Journal of Energy Chemistry 2021, 54, 815-821. DOI: 10.1016/j.jechem.2020.06.036. 68. Yang, Y.; Zhang, Z.; Zhang, Z.; Tang, C.; Chang, X.; Duan, L. Electrocatalytic CO2 Reduction with Re-based Spiro Bipyridine Complexes: Effects of the Local Proton in the Second Coordination Sphere. Chin. J. Chem . 2021, 39 (5), 1281-1287. DOI: https://doi.org/10.1002/cjoc.202000667. 67. Yang, Y.; Ertem, M. Z.; Duan, L. An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO2-to-CO reduction at low overpotential. Chem. Sci. 2021, 12 (13), 4779-4788, 10.1039/D0SC05679K. DOI: 10.1039/D0SC05679K. 66. Yang, J.; Wang, L.; Zhan, S.; Zou, H.; Chen, H.; Ahlquist, M. S. G.; Duan, L.; Sun, L. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nat. Commun. 2021, 12 (1), 373. DOI: 10.1038/s41467-020-20637-8. 65. Xiong, H.; Zou, H.; Rong, W.; Wang, Y.; Dai, H.; Ji, Y.; Duan, L. A single-step strategy for general construction of metal sub-nanoclusters on graphdiyne. 2D Mater. 2021, 9 (1), 014002. DOI: 10.1088/2053-1583/ac2f5f. 64. Xiong, H.; Zou, H.; Liu, H.; Wang, M.; Duan, L. Surface Functionalization of a γ-Graphyne-like Carbon Material via Click Chemistry. Chem. Asian J. 2021, 16 (8), 922-925. DOI: https://doi.org/10.1002/asia.202100125. 63. Wei, S.; Zou, H.; Rong, W.; Zhang, F.; Ji, Y.; Duan, L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl. Catal. B 2021, 284, 119739. DOI: https://doi.org/10.1016/j.apcatb.2020.119739. 62. Rong, W.; Zou, H.; Zang, W.; Xi, S.; Wei, S.; Long, B.; Hu, J.; Ji, Y.; Duan, L. Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction. Angew. Chem. Int. Ed. 2021, 60 (1), 466-472. DOI: 10.1002/anie.202011836. 61. Liu, H.; Wang, W.-H.; Xiong, H.; Nijamudheen, A.; Ertem, M. Z.; Wang, M.; Duan, L. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps. Inorg. Chem. 2021, 60 (5), 3410-3417. DOI: 10.1021/acs.inorgchem.0c03815. 60. Liang, X.; Yang, S.; Yang, J.; Sun, W.; Li, X.; Ma, B.; Huang, J.; Zhang, J.; Duan, L.; Ding, Y. Covalent immobilization of molecular complexes on metal-organic frameworks towards robust and highly efficient heterogeneous water oxidation catalysts. Appl. Catal. B 2021, 291, 120070. DOI: https://doi.org/10.1016/j.apcatb.2021.120070. 59. Fan, K.; Zou, H.; Dharanipragada, N. V. R. A.; Fan, L.; Inge, A. K.; Duan, L.; Zhang, B.; Sun, L. Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9 (18), 11359-11369, Article. DOI: 10.1039/d1ta01177d. 58. Zou, H.; Rong, W.; Wei, S.; Ji, Y.; Duan, L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (47), 29462-29468. DOI: 10.1073/pnas.2015108117. 57. Zhang, D.; Chen, M.; Zou, H.; Zhang, Y.; Hu, J.; Wang, H.; Zi, B.; Zhang, J.; Zhu, Z.; Duan, L.; et al. Microwave-Assisted Synthesis of Porous and Hollow α-Fe2O3/LaFeO3 Nanostructures for Acetone Gas Sensing as well as Photocatalytic Degradation of Methyl Blue. Nanotechnology 2020, 31 (21), 215601. DOI: 10.1088/1361-6528/ab73b5. 56. Yang, Y.; Zhang, Z.; Chang, X.; Zhang, Y.-Q.; Liao, R.-Z.; Duan, L. Highly Active Manganese-Based CO2 Reduction Catalysts with Bulky NHC Ligands: A Mechanistic Study. Inorg. Chem. 2020, 59 (14), 10234-10242. DOI: 10.1021/acs.inorgchem.0c01364. 55. Yang, Y.; Yang, J.; Li, F.; Liao, R.; Duan, L. Water Oxidation Catalyzed by Ruthenium Complexes with 4-Hydroxypyridine-2,6-dicarboxylate as a Negatively Charged Tridentate Ligand. Eur. J. Inorg. Chem. 2020, 2020 (23), 2238-2245. DOI: 10.1002/ejic.202000184. 54. Yang, Q.; Wu, Q.; Liu, Y.; Luo, S.; Wu, X.; Zhao, X.; Zou, H.; Long, B.; Chen, W.; Liao, Y.; et al. Novel Bi-Doped Amorphous SnOx Nanoshells for Efficient Electrochemical CO2 Reduction into Formate at Low Overpotentials. Adv. Mater. 2020, 32, 2002822. DOI: 10.1002/adma.202002822. 53. Yang, J.; Liu, B.; Duan, L. Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters. Dalton T. 2020, 49 (14), 4369-4375, 10.1039/C9DT04693C. DOI: 10.1039/C9DT04693C. 52. Tong, L.; Duan, L.; Zhou, A.; Thummel, R. P. First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coord. Chem. Rev. 2020, 402, 213079. DOI: https://doi.org/10.1016/j.ccr.2019.213079. 51. Pan, H.; Duan, L.; Liao, R.-Z. Capturing the Role of Phosphate in the Ni-PY5 Catalyzed Water Oxidation. ChemCatChem 2020, 12 (1), 219-226. DOI: 10.1002/cctc.201901439. 50. Ma, Y.; Yang, T.; Zou, H.; Zang, W.; Kou, Z.; Mao, L.; Feng, Y.; Shen, L.; Pennycook, S. J.; Duan, L.; et al. Synergizing Mo Single Atoms and Mo2C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N2 Reduction to Ammonia. Adv. Mater. 2020, 32 (33), 2002177. DOI: 10.1002/adma.202002177. 49. Huo, D.; Lin, F.; Chen, S.; Ni, Y.; Wang, R.; Chen, H.; Duan, L.; Ji, Y.; Zhou, A.; Tong, L. Ruthenium Complex-Incorporated Two-Dimensional Metal-Organic Frameworks for Cocatalyst-Free Photocatalytic Proton Reduction from Water. Inorg. Chem. 2020, 59 (4), 2379-2386. DOI: 10.1021/acs.inorgchem.9b03250. 48. Ge, Q. Y.; Feng, X. Z.; Wang, R. H.; Zheng, R. J.; Luo, S. Y.; Duan, L. L.; Ji, Y. F.; Lin, J.; Chen, H. Mixed Redox-Couple-Involved Chalcopyrite Phase CuFeS2 Quantum Dots for Highly Efficient Cr(VI) Removal. Environmental Science & Technology 2020, 54 (13), 8022-8031. DOI: 10.1021/acs.est.0c01018. 47. Zou, H.; Rong, W.; Long, B.; Ji, Y.; Duan, L. Corrosion-Induced CI-Doped Ultrathin Graphdiyne toward Electrocatalytic Nitrogen Reduction at Ambient Conditions. ACS Catal. 2019, 9 (12), 10649-10655. DOI: 10.1021/acscatal.9b02794. 46. Zou, H.; Li, G.; Duan, L.; Kou, Z.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B 2019, 259, 118100. DOI: 10.1016/j.apcatb.2019.118100. 45. Zang, W.; Yang, T.; Zou, H.; Xi, S.; Zhang, H.; Liu, X.; Kou, Z.; Du, Y.; Feng, Y. P.; Shen, L.; et al. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catal. 2019, 9 (11), 10166-10173. DOI: 10.1021/acscatal.9b02944. 44. Yang, J.; An, J.; Tong, L.; Long, B.; Fan, T.; Duan, L. Sulfur Coordination Effects on the Stability and Activity of a Ruthenium-Based Water Oxidation Catalyst. Inorg. Chem. 2019, 58 (5), 3137-3144. DOI: 10.1021/acs.inorgchem.8b03199. 43. Li, F.; Xu, R.; Nie, C.; Wu, X.; Zhang, P.; Duan, L.; Sun, L. Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. Chem. Commun. 2019, 55 (86), 12940-12943. DOI: 10.1039/c9cc06781g. 42. Fan, K.; Zou, H.; Duan, L.; Sun, L. Selectively Etching Vanadium Oxide to Modulate Surface Vacancies of Unary Metal-Based Electrocatalysts for High-Performance Water Oxidation. Adv. Energy Mater. 2019, 10 (5), 1903571. DOI: 10.1002/aenm.201903571. 41. Daniel, Q.; Duan, L.; Timmer, B. J. J.; Chen, H.; Luo, X.; Ambre, R. B.; Wang, Y.; Zhang, B.; Zhang, P.; Wang, L.; et al. Water oxidation initiated by in-situ dimerization of the molecular Ru(pdc) catalyst. ACS Catal. 2018, 8 (5), 4375-4382. DOI: 10.1021/acscatal.7b03768. 40. Zhang, P.; Chen, H.; Wang, M.; Yang, Y.; Jiang, J.; Zhang, B.; Duan, L.; Daniel, Q.; Li, F.; Sun, L. Gas-templating of hierarchically structured Ni-Co-P for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5 (16), 7564-7570, 10.1039/C7TA01716B. DOI: 10.1039/C7TA01716B. 39. Fan, T.; Duan, L.; Huang, P.; Chen, H.; Daniel, Q.; Ahlquist, M. S. G.; Sun, L. The Ru-tpc Water Oxidation Catalyst and Beyond: Water Nucleophilic Attack Pathway versus Radical Coupling Pathway. ACS Catal. 2017, 7 (4), 2956-2966. DOI: 10.1021/acscatal.6b03393. 38. Daniel, Q.; Huang, P.; Fan, T.; Wang, Y.; Duan, L.; Wang, L.; Li, F.; Rinkevicius, Z.; Mamedov, F.; Ahlquist, M. S. G.; et al. Rearranging from 6- to 7-coordination initiates the catalytic activity: An EPR study on a Ru-bda water oxidation catalyst. Coord. Chem. Rev. 2017, 346, 206-215. DOI: http://dx.doi.org/10.1016/j.ccr.2017.02.019. 37. Wang, L.; Duan, L.; Ambre, R. B.; Daniel, Q.; Chen, H.; Sun, J.; Das, B.; Thapper, A.; Uhlig, J.; Dinér, P.; et al. A nickel (II) PY5 complex as an electrocatalyst for water oxidation. J. Catal. 2016, 335, 72-78. 36. Wang, L.; Chen, H.; Daniel, Q.; Duan, L.; Philippe, B.; Yang, Y.; Rensmo, H.; Sun, L. Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH)2 and Carbon Nanotubes. Adv. Energy Mater. 2016, 6 (15), 1600516. DOI: 10.1002/aenm.201600516. 35. Duan, L.; Manbeck, G. F.; Kowalczyk, M.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)]2+ (6DHBP = 6,6′-(OH)2bpy). Inorg. Chem. 2016, 55 (9), 4582-4594. DOI: 10.1021/acs.inorgchem.6b00398. 34. Daniel, Q.; Wang, L.; Duan, L.; Li, F.; Sun, L. Tailored design of ruthenium molecular catalysts with 2,2'-bypyridine-6,6'-dicarboxylate and pyrazole based ligands for water oxidation. Dalton T. 2016, 45 (37), 14689-14696, 10.1039/C6DT01287F. DOI: 10.1039/C6DT01287F. 33. Ambre, R. B.; Daniel, Q.; Fan, T.; Chen, H.; Zhang, B.; Wang, L.; Ahlquist, M. S. G.; Duan, L.; Sun, L. Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO. Chem. Commun. 2016, 52 (100), 14478-14481, 10.1039/C6CC08099E. DOI: 10.1039/C6CC08099E. 32. Wang, Y.; Duan, L.; Wang, L.; Chen, H.; Sun, J.; Sun, L.; Ahlquist, M. S. G. Alkene Epoxidation Catalysts [Ru(pdc)(tpy)] and [Ru(pdc)(pybox)] Revisited: Revealing a Unique RuIV═O Structure from a Dimethyl Sulfoxide Coordinating Complex. ACS Catal. 2015, 5 (7), 3966-3972. DOI: 10.1021/acscatal.5b00496. 31. Wang, L.; Mirmohades, M.; Brown, A.; Duan, L.; Li, F.; Daniel, Q.; Lomoth, R.; Sun, L.; Hammarstrom, L. Sensitizer-Catalyst Assemblies for Water Oxidation. Inorg. Chem. 2015, 54 (6), 2742-2751. DOI: 10.1021/ic502915r. 30. Wang, L.; Fan, K.; Daniel, Q.; Duan, L.; Li, F.; Philippe, B.; Rensmo, H.; Chen, H.; Sun, J.; Sun, L. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode. Chem. Commun. 2015, 51 (37), 7883-7886. DOI: 10.1039/c5cc00242g. 29. Li, F.; Fan, K.; Wang, L.; Daniel, Q.; Duan, L.; Sun, L. Immobilizing Ru (bda) catalyst on photoanode via electrochemical polymerization for light-driven water splitting. ACS Catal. 2015, 5, 3786-3790. DOI: 10.1021/cs502115f. 28. Duan, L.; Wang, L.; Li, F.; Li, F.; Sun, L. Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands. Acc. Chem. Res. 2015, 48, 2084-2096. DOI: 10.1021/acs.accounts.5b00149. 27. Wang, L.; Duan, L.; Wang, Y.; Ahlquist, M. S. G.; Sun, L. Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chem. Commun. 2014, 50 (85), 12947-12950. DOI: 10.1039/c4cc05069j. 26. Staehle, R.; Tong, L.; Wang, L.; Duan, L.; Fischer, A.; Ahlquist, M. S. G.; Sun, L.; Rau, S. Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2 '-Bipyridine-6,6 '-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior. Inorg. Chem. 2014, 53 (3), 1307-1319. DOI: 10.1021/ic401701z. 25. Wang, L.; Duan, L.; Tong, L.; Sun, L. Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. J. Catal. 2013, 306, 129-132. DOI: 10.1016/j.jcat.2013.06.023. 24. Tong, L.; Inge, A. K.; Duan, L.; Wang, L.; Zou, X.; Sun, L. Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand. Inorg. Chem. 2013, 52 (5), 2505-2518. DOI: 10.1021/ic302446h. 23. Duan, L.; Wang, L.; Inge, A. K.; Fischer, A.; Zou, X.; Sun, L. Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities. Inorg. Chem. 2013, 52 (14), 7844-7852. DOI: 10.1021/ic302687d. 22. Wang, L.; Duan, L.; Stewart, B.; Pu, M.; Liu, J.; Privalov, T.; Sun, L. Toward Controlling Water Oxidation Catalysis: Tunable Activity of Ruthenium Complexes with Axial Imidazole/DMSO Ligands. Journal of the American Chemical Society 2012, 134 (45), 18868-18880. DOI: 10.1021/ja309805m. 21. Tong, L.; Wang, Y.; Duan, L.; Xu, Y.; Cheng, X.; Fischer, A.; Ahlquist, M. S. G.; Sun, L. Water Oxidation Catalysis: Influence of Anionic Ligands upon the Redox Properties and Catalytic Performance of Mononuclear Ruthenium Complexes. Inorg. Chem. 2012, 51 (6), 3388-3398. DOI: 10.1021/ic201348u. 20. Li, L.; Duan, L.; Wen, F.; Li, C.; Wang, M.; Hagfeld, A.; Sun, L. Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun. 2012, 48 (7), 988-990. DOI: 10.1039/c2cc16101j. 19. Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chemistry 2012, 4 (5), 418-423. DOI: 10.1038/nchem.1301. 18. Duan, L.; Araujo, C. M.; Ahlquist, M. S. G.; Sun, L. Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (39), 15584-15588. DOI: 10.1073/pnas.1118347109. 17. An, J.; Duan, L.; Sun, L. Ru complexes containing pyridine dicarboxylate ligands: electronic effects on their catalytic activity toward water oxidation. Faraday Discuss. 2012, 155, 267-275. DOI: 10.1039/c1fd00101a. 16. Xu, Y.; Duan, L.; Akermark, T.; Tong, L.; Lee, B.-L.; Zhang, R.; Akermark, B.; Sun, L. Synthesis and Catalytic Water Oxidation Activities of Ruthenium Complexes Containing Neutral Ligands. Chem-Eur J 2011, 17 (34), 9520-9528. DOI: 10.1002/chem.201100274. 15. Tong, L.; Duan, L.; Xu, Y.; Privalov, T.; Sun, L. Structural Modifications of Mononuclear Ruthenium Complexes: A Combined Experimental and Theoretical Study on the Kinetics of Ruthenium-Catalyzed Water Oxidation. Angew. Chem. Int. Edit. 2011, 50 (2), 445-449. DOI: 10.1002/anie.201005141. 14. Duan, L.; Xu, Y.; Tong, L.; Sun, L. Ce-IV- and Light-Driven Water Oxidation by Ru(terpy)(pic)(3) (2+) Analogues: Catalytic and Mechanistic Studies. Chemsuschem 2011, 4 (2), 238-244. DOI: 10.1002/cssc.201000313. 13. Duan, L.; Tong, L.; Xu, Y.; Sun, L. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ. Sci. 2011, 4 (9), 3296-3313. DOI: 10.1039/c1ee01276b. 12. Xu, Y.; Fischer, A.; Duan, L.; Tong, L.; Gabrielsson, E.; Akermark, B.; Sun, L. Chemical and Light-Driven Oxidation of Water Catalyzed by an Efficient Dinuclear Ruthenium Complex. Angew. Chem. Int. Edit. 2010, 49 (47), 8934-8937. DOI: 10.1002/anie.201004278. 11. Xu, Y.; Duan, L.; Tong, L.; Akermark, B.; Sun, L. Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem. Commun. 2010, 46 (35), 6506-6508. DOI: 10.1039/c0cc01250e. 10. Nyhlen, J.; Duan, L.; Akermark, B.; Sun, L.; Privalov, T. Evolution of O-2 in a Seven-Coordinate Ru-IV Dimer Complex with a HOHOH (-) Bridge: A Computational Study. Angew. Chem. Int. Edit. 2010, 49 (10), 1773-1777. DOI: 10.1002/anie.200906439. 9. Li, L.; Duan, L.; Xu, Y.; Gorlov, M.; Hagfeldt, A.; Sun, L. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem. Commun. 2010, 46 (39), 7307-7309. DOI: 10.1039/c0cc01828g. 8. Duan, L.; Xu, Y.; Zhang, P.; Wang, M.; Sun, L. Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System. Inorg. Chem. 2010, 49 (1), 209-215. DOI: 10.1021/ic9017486. 7. Duan, L.; Xu, Y.; Gorlov, M.; Tong, L.; Andersson, S.; Sun, L. Chemical and Photochemical Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a Negatively Charged Tridentate Ligand. Chem-Eur J 2010, 16 (15), 4659-4668. DOI: 10.1002/chem.200902603. 6. Xu, Y.; Akermark, T.; Gyollai, V.; Zou, D.; Eriksson, L.; Duan, L.; Zhang, R.; Akermark, B.; Sun, L. A New Dinuclear Ruthenium Complex as an Efficient Water Oxidation Catalyst. Inorg. Chem. 2009, 48 (7), 2717-2719. DOI: 10.1021/ic802052u. 5. Duan, L.; Wang, M.; Li, P.; Wang, N.; Wang, F.; Sun, L. Synthesis, protonation and electrochemical properties of trinuclear NiFe2 complexes Fe-2(CO)(6)(mu(3)-S)(2) Ni(Ph2PCH2)(2)NR (R = n-Bu, Ph) with an internal pendant nitrogen base as a proton relay. Inorg. Chim. Acta 2009, 362 (2), 372-376. DOI: 10.1016/j.ica.2008.04.011. 4. Duan, L.; Fischer, A.; Xu, Y.; Sun, L. Isolated Seven-Coordinate Ru(IV) Dimer Complex with HOHOH (-) Bridging Ligand as an Intermediate for Catalytic Water Oxidation. Journal of the American Chemical Society 2009, 131 (30), 10397-10399. DOI: 10.1021/ja9034686. 3. Cui, H.; Wang, M.; Duan, L.; Sun, L. Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. J. Coord. Chem. 2008, 61 (12), 1856-1861. DOI: 10.1080/00958970701767002. 2. Lele, D.; Mei, W.; Ping, L.; Yong, N.; Ning, W.; Licheng, S. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Dalton T. 2007, (13), 1277-1283. DOI: 10.1039/b616645h. 1. Cui, H.-G.; Wang, M.; Dong, W.-B.; Duan, L.-L.; Li, P.; Sun, L.-C. Synthesis, structures and electrochemical properties of hydroxyl- and pyridyl-functionalized diiron azadithiolate complexes. Polyhedron 2007, 26 (4), 904-910. DOI: 10.1016/j.poly.2006.09.023.