徐红星 照片

徐红星

教授

所属大学: 武汉大学

所属学院: 物理科学与技术学院

邮箱:
hxxu@whu.edu.cn

个人主页:
https://physics.whu.edu.cn/info/1178/5233.htm

个人简介

教育经历 1988 年 09 月 - 1992 年 07 月,就读于北京大学技术物理系,获学士学位。 工作经历 1992 年 09 月 - 1994 年 09 月,担任北京应用物理与计算数学研究所工程师。 1996 年 09 月 - 2002 年 03 月,在瑞典查尔莫斯理工大学应用物理系学习,获博士学位。(其间:2001 年 02 月 - 2001 年 06 月,作为访问学者在加拿大国家研究院微结构研究所) 2002 年 09 月 - 2004 年 12 月,任瑞典隆德大学固体物理系助理教授。 2005 年 01 月,担任物理研究所研究员。 2009 年 05 月 - 2014 年 06 月,任中科院物理研究所纳米物理与器件实验室主任。 2012 年 06 月 - 至今,担任武汉大学纳米科学与技术研究中心主任。 2014 年 10 月 - 至今,担任武汉大学物理科学与技术学院教授。 2016 年 06 月 - 2019 年 06 月,担任武汉大学物理科学与技术学院院长。 2020.11 - 至今,担任武汉大学微电子学院院长。 2021.10 - 至今,担任武汉量子技术研究院院长。

研究领域

Owing to the fundamental laws of diffraction, any dielectric system cannot focus light to a spot less than about half a wavelength of light (~λ/2). This diffraction limit imposes a lower limit of ~(/2)3 for the mode volume of a dielectric cavity, where is the wavelength of light inside the dielectric medium. Surface plasmons (SPs) can surpass [overcome,break]this diffraction limit by storing the electromagnetic energy partly in the kinetic energy of free electrons in conductors. This enables metallic nanostructures to concentrate light into deep-subwavelength volumes and to enhance the local density of states, which have propelled their use in a vast array of nanophotonics technologies and research endeavours[it has propelled use in a vast array of nanophotonics technologies and research endeavours because of the unprecedented abilities of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes and to largely enhance the local density of states.]. After a rapid development in the past decades, plasmonics is now covering a broad range of branches, including information technology, biological/chemical sensing, medical therapy, renewable energy, and super-resolution imaging, etc.

近期论文

Sun, J.; Hu, H.; Pan, D.; Zhang, S.; Xu, H., Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS2 by Local Chirality in Single Plasmonic Nanocavity. Nano Letters 2020, 20 (7), 4953-4959. Dai, W.; Liu, W.; Yang, J.; Xu, C.; Alabastri, A.; Liu, C.; Nordlander, P.; Guan, Z.; Xu, H., Giant photothermoelectric effect in silicon nanoribbon photodetectors. Light: Science & Applications 2020, 9 (120). Wei, W.; Zhang, J.; Wang, J; Cong, H.; Guo, J.; Wang, Z.; Xu, H.; Wang, T.; Zhang, J., Phosphorus-free 1.5 microm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett 2020, 45 (7), 2042-2045. Li, Y.; Hu, H.; Jiang, W.; Shi, J.; Naomi, J.; Peter, N.; Zhang, S.; Xu, H., Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters DOI: 10.1021/acs.nanolett.0c00434. Ou, Z.;Wang, T.; Tang, J.; Zong, X.; Wang, W.; Guo, Q.;Xu, Y.;Zhu, C.; Wang, L.; Huang, W.; Xu, H., Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. Advanced Optical Materials 2020, 8 (10), 2000201. Jiang, W.; Hu, H.; Deng, Q.; Zhang, S.; Xu, H., Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics 2020. Li, Y.; Hu, H.; Jiang, W.; Shi, J.; Naomi, J.; Peter, N.; Zhang, S.; Xu, H., Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters 2020. He, X.; Tang, J.; Hu, H.; Shi, J.; Guan, Z.; Zhang, S.; Xu, H., Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS Nano 2019, 13 (12), 14041-14047. Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; Garcia de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Kall, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J. F.; Ling, X. Y.; Maier, S. A.; Mayerhofer, T.; Moskovits, M.; Murakoshi, K.; Nam, J. M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlucker, S.; Tay, L. L.; Thomas, K. G.; Tian, Z. Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzan, L. M., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2019, 14 (1), 28-117. Guo, Q.; Fu, T.; Tang, J.; Pan, D.; Zhang, S.; Xu, H., Routing a Chiral Raman Signal Based on Spin-Orbit Interaction of Light. Physical Review Letters 2019, 123 (18). Zhang Y.; Chen W.; Fu T.; Sun J.; Zhang D.; Li Y.; Zhang S.; Xu H., Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe2: Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters 2019, 19 (9), 6284-6291. Zheng, D.; Li, Y.; Chen, W.; Fu, T.; Sun, J.; Zhang, S.; Xu, H., The novel plasmonics-transition metal dichalcogenides hybrid nanostructures. SCIENTIA SINICA Physica, Mechanica & Astronomica 2019, 49 (12), 124205. Shi, J.; Li, Y.; Kang, M.; He, X.; Halas, N. J.; Nordlander, P.; Zhang, S.; Xu, H., Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters 2019, 19 (6), 3838-3845. Liu, Y.; Tian, X.; Guo, W.; Wang, W.; Guan, Z.; Xu, H., Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Research 2019, 12 (7), 1643-1649. Liu, W.; Wang, W.; Guan, Z.; Xu, H., A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale 2019, 11 (11), 4918-4924. Yang, D.-J.; Zhang, S.; Im, S.-J.; Wang, Q.; Xu, H.; Gao, S., Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale 2019, 11, 10977-10983. He, X.; Tang, J.; Hu, H.; Shi, J.; Guan, Z.; Zhang, S.; Xu, H., Electrically Driven Highly Tunable Cavity Plasmons. ACS Photonics 2019, 6 (4), 823-829. Hu, H.; Zhang, S.; Xu, H., Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A 2019, 99 (3), 033815. Li, Q.; Pan, D.; Wei, H.; Xu, H., Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire. Nano Letters 2018, 18 (3), 2009-2015. Gao, L.; Chen, L.; Wei, H.; Xu, H., Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 2018, 10 (25), 11923-11929.