谭志杰
教授 博导
个人简介
1996年获武汉大学理学学士,2001年获武汉大学博士学位,博士学位论文获全国优秀博士论文提名奖和湖北省优秀博士论文。2001年破格晋升为副教授,后公派赴美国密苏里大学合作研究。2008年6月回到武汉大学,晋升为教授,并被遴选为博士生导师。2008年入选教育部新世纪人才计划,2010年获国家自然科学二等奖(第三完成人),2011年获湖北省青年科技奖。担任中国物理学会软物质与生物物理专业委员会委员、中国生物信息学会(筹)生物分子结构预测与模拟专业委员会常务委员、全国统计物理与复杂系统会议学术委员会委员等。主讲弘毅学堂物理班《热力学与统计物理》和研究生《高等固体物理》。
研究领域
1,基于物理原理与人工智能,预测核酸分子结构、热力学及其与蛋白质作用; 2,基于物理原理与人工智能,预测核酸-药物小分子复合体结构及其热力学; 3,基于计算机模拟与人工智能,预测和理解核酸动态结构与其功能间的关系。
近期论文
1. Dong et al. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res. gkae063, 2024. 2. Wang et al. RNA 3D Structure Prediction: Progress and Perspective. Molecules. 28: 5532, 2023. (invited review) 3. Wang et al. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions. Biophys J. 122: 1503-1516, 2023. 4. Tan et al. cgRNASP: coarse-grained statistical potentials with residue separation for RNA structure evaluation. NAR Genom Bioinform. 5: lqad016, 2023. 5. Zhao et al. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res. 50: 12344-12354, 2022. 6. Zhou et al. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J. 121: 3381-3392, 2022. 7. Qiang et al. Multivalent cations reverse the twist-stretch coupling of RNA. Phys Rev Lett 128, 108103, 2022. 8. Tan et al. rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation. Biophys J. 121:142-156, 2022. (New and Notable article) 9. Li et al. Effective repulsion between oppositely charged particles in symmetrical multivalent salt solutions: effect of salt valence. Front Phys 9, 696104, 2021. 10. Feng et al. Salt-Dependent RNA pseudoknot stability: effect of spatial confinement. Front Mol Biosci. 8:666369, 2021. 11. Tan et al. Statistical potentials for 3D structure evaluation: from proteins to RNAs. Chin Phys B 30: 028705 (1-13), 2021. (invited review) 12. Lin et al. Multivalent ion-mediated attraction between like-charged colloidal particles: nonmonotonic dependence on the particle charge. ACS omega 6: 9876-9886, 2021. 13. Zheng et al. Ion-mediated interactions between like-charged polyelectrolytes with bending flexibility. Scientific Reports 10: 21586, 2020. 14. Fu et al. Opposite Effects of high-valent cations on the elasticities of DNA and RNA duplexes revealed by magnetic tweezers. Phys Rev Lett 124: 058101, 2020. 15. Wang et al. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA. 26: 470-480, 2020. 16. Jin et al. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability and folding pathway. RNA. 25:1532-1548, 2019. 17. Lin et al. Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. J Chem Phys 151, 114902, 2019. 18. Liu et al. Structural flexibility of DNA-RNA hybrid duplex: stretching and twist-stretch coupling. Biophys J 117:74-86, 2019. 19. Tan et al. What is the best reference state for building statistical potentials in RNA 3D structure evaluation? RNA. 25: 793-812, 2019. 20. Jin et al. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys J 115: 1403-1416, 2018. 21. Shi et al. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PloS Comput Biol 14: e1006222, 2018. 22. Xi et al. Competitive binding of Mg2+ and Na+ ions to nucleic acids: from helices to tertiary structures. Biophys J 114: 1776-1790, 2018. 23. Zhang et al. Potential of mean force between oppositely charged nanoparticles: A comprehensive comparison between Poisson– Boltzmann theory and Monte Carlo simulations. Sci Rep 7: 14145, 2017. 24. Zhang et al. Divalent ion-mediated DNA-DNA interactions: A comparative study of triplex and duplex. Biophys J 113:517-528, 2017. (Highlighted article)