金海林 照片

金海林

讲师

所属大学: 苏州科技大学

所属学院: 数理学院

邮箱:
jinhailin@mail.usts.edu.cn

个人主页:
http://slxy.usts.edu.cn/info/1175/1420.htm

个人简介

2014年7月毕业于上海大学数学系获理学博士学位。2014年8月至今年在苏州科技大学数理学院任教,讲师。美国数学会Mathematical Reviews评论员。

研究领域

主要研究领域为凸几何分析。在凸体对称度研究中,给出了n维等宽体Minkowski非对称度分布定理,证明了正则单形完备体是最不对称的等宽体

近期论文

[1] H.L. Jin, Electrostatic capacity and measure of asymmetry, Proceedings of A.M.S., DOI: https://doi.org./10.1090/proc/14623.

[2] H.L. Jin, The log-Minkowski measure of asymmetry for convex bodies, Geom. Dedicata,196 (2018), 27–34.

[3] X.Y. Zhou, H.L. Jin*, Critical chords of convex bodies of constant width, Wuhan Univ. J. Nat. Sci., 23 (2018), 461-464.

[4] P.Z. Guo, H.L. Jin*, Groemer-Wallen measure of asymmetry for Reuleaux Polygons, J. Geom. 108 (2017), 879–884.

[5] H.L. Jin, Asymmetry of Reuleaux Polygons, Beitr. Algebra Geom., 58(2017) , 311–317.

[6] H.L. Jin, S.F. Yuan, G.S. Leng, On the dual Orlicz mixed volumes, Chin. Ann. Math. Ser. B., 36(2015), no. 6, 1019-1026.

[7] S.F. Yuan, H.L Jin, G.S. Leng, Orlicz Geominimal surface areas, Math. Inequal. Appl., 18(2015), 353-362

[8] H.L. Jin, Asymmetry for convex bodies of revolution, Wuhan Univ. J. Nat. Sci., 20(2015), no.2, 97-100. DOI 10.1007/s11859-015-1065-1.

[9] 袁淑峰, 金海林, 一些几何不等式的等价性, 上海大学学报(自然科学版), 25(2015). DOI: 10.3969/j.issn.1007-2861.2014.01.043

[10] H.L. Jin, G.S. Leng, Q. Guo, Mixed volumes and measures of asymmetry, Acta Math. Sin. ( Engl. Ser.), 30(2014), 1905-1916.

[11] H.L. Jin, Q. Guo,The mean Minkowski measures for convex bodies of constant width, Taiwan. J. Math., 18(2014), 1283-1291.

[12] H.L. Jin, S. F. Yuan, A sharp Rogers-Shephard type inequality for Orlicz-difference body of planar convex bodies, Proc. Indian Acad. Sci. (Math. Sci.), 124(2014), no. 4, 573-580.

[13] D.M. Xi, H.L Jin, G.S. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math., 260(2014), 350-374.

[14] H.L. Jin, On the 1-measure of asymmetry for convex bodies of constant width, Beitr. Algebra Geom. 55(2014), no. 1, 201-206.

[15] H.L. Jin, G.S. Leng, Q. Guo, Orlicz metrics of convex bodies, Bol. Soc. Mat. Mex., 20(2014), 49-56.

[16] H.L. Jin, G. Leng, Q. Guo, Stability for the Minkowski measure of convex domains of constant width, J. Geom. 104(2013), 505-513.

[17] H.L. Jin, Q. Guo, A note on the extremal bodies of constant width for the Minkowski measure, Geom. Dedicata,164(2013), 227-229.

[18] H.L. Jin, Q. Guo, Asymmetry of convex bodies of constant width, Discrete Comput. Geom. 47 (2012), 415-423.

[19] Q. Guo, H.L. Jin, On a measure of asymmetry for Reuleaux polygons, J. Geom., 102 (2011), 73–79.

[20] H.L. Jin, Q. Guo, On the asymmetry for convex domains of constant width, Comm. Math. Res. 26(2010), 176-182.