党亚峥
副教授 硕士生导师
所属大学: 上海理工大学
所属学院: 管理学院
邮箱:
jgdyz@163.com
个人主页:
http://bs.usst.edu.cn/2020/0630/c10586a226342/page.htm
个人简介
教育背景与工作经历 博士,系统分析与集成 ,上海理工大学 硕士,应用数学,河南理工大学 学士 , 数学教育 ,河南大学 2013.05--2013.12,访问学者,新加坡国立大学 2018.08-2019.08 访问学者,科廷大学
科(教)研项目及成果 1.国家自然科学基金面上项目,NO.11171221,基于非光滑分析与优化方法的混杂博弈研究,2012/01-2015/12,48万,已结题,参加 2.国家自然科学基金面上项目,NO.71572113,大数据背景下的服务系统质量智能监控研究-以联络中心为例,2017/01-2020/12,60万,在研,参加 3. 上海市自然基金项目,N0.14ZR1429200,凸可行问题的束方法及其收敛性研究,2014/07-2017/06,,主持 4 上海市教委科研计划,NO.15ZZ073,捆集法在混杂博弈中的应用,2015/01-2017/12,,主持
主讲课程 最优化理论(硕士生) 高级运筹学(硕士生) 概率统计(硕士生) 运筹学(本科) 统计学(本科) 时间序列分析(本科)
代表性论著 1.YazhengDang#,Zhonghui Xue*, Yan Gao,Fast self-adaptive regularization iterativealgorithm for solving split feasibility problem,Journal of Industrial and ManagementOptimization, 2019, 2.YazhengDang#,Jian Yao*,Yan Gao,Relaxed two points projection method for solving themultiple-sets split equality problem,Numerical Algorithms,2018 7(8): 263-275 3.YazhengDang#,Jie Sun,Su Zhang*,Double projection algorithms for solving the splitfeasibility problems,Journal of Industrial and Management Optimization 2018 13(5):1-12
荣誉
研究领域
金融优化 智能优化 数字金融 包容性增长
近期论文
1.YazhengDang, Jian Yao and Yan Gao. Relaxed two points projection method for solvingmultiple-sets split equality problem. Numerical Algorithm. 2017,1-13(SCI)
2.YazhengDang,Wenwen Liu. A Nonmonotone Projection Method for Constrained System of NonlinearEquations, Mathematical Problems in Engineering, 2017.1-18(SCI)
3.YazhengDang, Jie Sun. Inertial Accelerated Algorithms for Solving Split FeasibilityProblem, Journal of Industrial and Management Optimization, 2017, 13(3):1383-1394. (SCI)
4.Yazheng Dang, Yan Gao, Bo Wang. A new Extragradient-type algorithm for thesplit feasibility problem, Mathematical Problems in Engineering, 2016. (SCI)
5.Yazheng Dang. Hybrid CQ projection algorithm with line-search process for thesplit feasibility problem, Journal of Inequalities and Applications, 2016. (SCI)
6.Yazheng Dang, Yan Gao. Non-monotonous sequential subgradient projectionalgorithm for convex feasibility problem, Acta Mathematicae ApplicataeSinica-English Series, 2016.12-17(SCI)
7.YazhengDang, Zhonghui Xue, Yan Gao.Iterative process for solving a multiple-set splitfeasibility problem,Journal of Inequalities and Applications,2015(1), 1-47(SCI)
8.Yazheng Dang, Yan Gao. Bi-extrapolated subgradient projection algorithm forsolving multiple-sets split feasibility problem. Applied Mathematics a Journalof Chinese Universities. 2014 (3), 283-294. (SCI)
9.Yazheng Dang ,Yan Gao. A new simultaneous subgradient projection algorithm forsolving a multiple-sets split feasibility problem. Applications of Mathematics.2014(1).37-51. (SCI)
10.Yazheng Dang, Convergence of an algorithm for the split common fixed-point ofasymptomatic quasi-nonexpansive operators,Pacific Journal of Optimization,2014.01.01,10(3): 453~460(SCI)
11.Yazheng Dang,Yan Gao. The strong convergence of a three-step algorithm for thesplit feasibility problems, Optimization Letter.2013(7).1325-1339. (SCI)
12.Yazheng Dang, Yan Gao. Inertial iteration for split common fixed-point problemfor quasi-nonexpansive operator.Abstract and Applied Analysis.2013(07).1-5. (SCI)
13.Yazheng Dang, Yan Gao..Non-monotonous accelerated parallel subgradientprojection algorithm for convex feasibility problemoptimization.2014(4).571-584. (SCI)
14.Yazheng Dang, Yan Gao. Weak and strong convergence of an algorithm for thesplit common fixed-point of asymptotically quasi-nonexpansiveoperators.Mathematical Problems in Engineering.2013(6).1-5. (SCI)
15.Yazheng Dang, Yan Gao. Inertial projection algorithms for convex feasibilityproblem. System Engineering and Electronic Techniques(English). 2012(5).54-60. (SCI)
16.Yazheng Dang, Yan Gao.. An extrapolated iterative algorithm for multile-setsplit feasibility problem. Abstract and Applied Analysis.2012(4).p56-p60. (SCI)
17.Yazheng Dang, Yan Gao.. A perturbed projection algorithm with inertialtechnique for split feasibility problem. Journal of Applied Mathematics. 2012(2).78-83. (SCI)
18.Yazheng Dang and Yan Gao, The Strong Convergence of a KM-CQ-like Algorithm fora Split Feasibility Problem, Inverse Problems Vol. 27, No.1, article 015007, p.9, 2011. (SCI)