陈臻 照片

陈臻

副教授 博士生导师

所属大学: 上海交通大学

所属学院: 船舶海洋与建筑工程学院

邮箱:
zhen.chen@sjtu.edu.cn

个人主页:
https://naoce.sjtu.edu.cn/teachers/chenzhen1.html

个人简介

陈臻,副教授,博士生导师,国家级青年人才

工作经历: 2022.02 - 至今,上海交通大学 船舶海洋与建筑工程学院 长聘教轨副教授 2021.07 - 2022.01,新加坡国立大学 机械工程系 博士后研究员 2018.08 - 2021.07,新加坡国立大学 Temasek实验室 研究科学家

教育经历: 2014.08 - 2018.08,新加坡国立大学 机械工程系 博士 2011.09 - 2014.06,大连理工大学 船舶工程学院 硕士 2007.09 - 2011.06,大连理工大学 船舶工程学院 本科

科研项目 2023.01 - 2025.12,国家级青年人才项目,主持 2023.01 - 2025.12,国家自然科学基金青年项目,主持 2023.01 - 2024.12,上海交通大学“深蓝计划”配套项目,主持

专著 学术专著(Monographs): Zhen Chen, Chang Shu. “Simplified and Highly Stable Lattice Boltzmann Method: Theory and Applications”. World Scientific, 2020. Liming Yang, Yan Wang, Zhen Chen, Chang Shu. “Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications”. World Scientific, 2020.

荣誉和奖励 2022,上海交通大学“小米青年学者” 2021,国家级青年人才项目 2021,上海市海外高层次人才引进计划 2017,教育部自然科学一等奖(排名:7/7)

研究领域

1)计算流体力学算法与应用

2)基于Boltzmann方程的动理学计算方法

3)无网格方法:光滑粒子动力学(SPH)方法

4)多相流和相变问题的数值模拟

5)多尺度流动的数值模拟

6)流-固耦合

7)高性能计算和数值模拟平台开发

学术兼职

2023.03 - 至今,《Advances in Aerodynamics》、《空气动力学学报》、《实验流体力学》三刊青年编委会

2022.11 - 至今,《Journal of Hydrodynamics》、《水动力学研究与进展》两刊编委会

2022,《Entropy》特刊“Kinetic Theory-based Methods in Fluid Dynamics”客座编辑

近期论文

[48] Z. Chen, C. Shu, Y.Y. Liu, L.Q. Zhang, Z.L. Zhang, Z.Y. Yuan. Isotherm-evolution-based interface tracking algorithm for modelling temperature-driven solid-liquid phase-change in multiphase flows. International Journal of Thermal Sciences, 2022; 177:107541.

[47] Z.F. Meng, Z. Chen, B.C. Khoo, A.M. Zhang. Long-time prediction of sea wave trains by LSTM machine learning method. Ocean Engineering, 2022; 262:112213.

[46] Y.Y. Liu, Z. Chen, C. Shu, S.C. Chew, B.C. Khoo, X. Zhao. Application of a variational hybrid quantum-classical algorithm to heat conduction equation and analysis of time complexity. Physics of Fluids, 2022; in press.

[45] Z. Chen, C. Shu, Y.Y. Liu, L.Q. Zhang. Ternary phase-field simplified multiphase lattice Boltzmann method and its application to compound droplet dynamics on solid surface in shear flow. Physical Review Fluids 2021; 6(9): 094304.

[44] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu. Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Physical Review E, 2021; 103(2):023308.

[43] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu, Y.Y. Liu. Mixed convection between rotating sphere and concentric cubical enclosure. Physics of Fluids, 2021; 33(1):013605.

[42] X. Zhao, Z. Chen, L.M. Yang, N.Y. Liu, C. Shu. Efficient boundary condition-enforced immersed boundary method for incompressible flows with moving boundaries. Journal of Computational Physics, 2021; 441:110425.

[41] L.M. Yang, C. Shu, Z. Chen, Y.Y. Liu, J. Wu. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows. Physical Review E, 2021; 104(1): 015305.

[40] L.M. Yang, C. Shu, Z. Chen, Y. Wang, G.X. Hou. A simplified lattice Boltzmann flux solver for multiphase flows with large density ratio. International Journal for Numerical Methods in Fluids,2021; 93(5):1895-1912.

[39] B. Harikrishnan, Z. Chen, C. Shu. A New Explicit Immersed Boundary Method for Simulation of Fluid-Solid Interactions. Advances in Applied Mathematics and Mechanics, 2021; 13(2):261-284.

[38] L.M. Yang, C. Shu, Z. Chen, G.X. Hou, Y. Wang. An improved multiphase lattice Boltzmann flux solver for the simulation of incompressible flow with large density ratio and complex interface. Physics of Fluids, 2021; 33(3):033306.

[37] L.M. Yang, C. Shu, Z. Chen, Y.Y. Liu, Y. Wang, X. Shen. High-order gas kinetic flux solver for simulation of two dimensional incompressible flows. Physics of Fluids, 2021; 33(1):017107.

[36] Z. Chen, C. Shu, Y. Wang, L.M. Yang. Oblique Drop Impact on Thin Film: Splashing Dynamics at Moderate Impingement Angles. Physics of Fluids, 2020; 32(3): 033303. (Editor’s pick)

[35] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu. Immersed Boundary – Simplified Thermal Lattice Boltzmann Method for Incompressible Thermal Flows. Physics of Fluids, 2020; 32(1): 013605. (Editor’s pick)

[34] Z. Chen & C. Shu, On Numerical Diffusion of Simplified Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 2020; 92: 1198-1211.

[33] Z. Chen & C. Shu. Simplified Lattice Boltzmann Method for non-Newtonian Power-law Fluid Flows. International Journal for Numerical Methods in Fluids, 2020; 92(1): 38-54.

[32] L.Q. Zhang, Z. Chen, L.M. Yang, C. Shu. Double Distribution Function-based Discrete Gas Kinetic Scheme for Viscous Incompressible and Compressible Flows. Journal of Computational Physics, 2020; 412: 109428.

[31] X. Zhao, C. Wu, Z. Chen, L.M. Yang, C. Shu. Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows. Physics of Fluids, 2020; 32: 067108. (Editor’s Pick)

[30] L.M. Yang, C. Shu, Z. Chen, J. Wu. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Physical Review E, 2020; 101(5): 053309.

[29] Z. Chen, C. Shu, L.Q. Zhang. A simplified axisymmetric lattice Boltzmann method for incompressible swirling and rotating flows. Physics of Fluids, 2019; 31(2): 023605.

[28] B.X. Zheng, Z. Chen*,A multiphase smoothed particle hydrodynamics model with lower numerical diffusion. Journal of Computational Physics, 2019; 382: 177-201.

[27] L.Q. Zhang, Z. Chen*, L.M. Yang, M.Q. Zhang. An improved axisymmetric lattice boltzmann flux solver for axisymmetric isothermal/thermal flows. International Journal for Numerical Methods in Fluids, 2019; 90(12): 632-650.

[26] L.Q. Zhang, Z. Chen, C. Shu, M.Q. Zhang. A Kinetic Theory-based axisymmetric lattice boltzmann flux solver for isothermal and thermal swirling flows. Journal of Computational Physics, 2019; 392: 141-160.

[25] L.Q. Zhang, Z. Chen, L.M. Yang, C. Shu. An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows. Physics of Fluids, 2019; 31: 066103.

[24] Z.Y. Zhang, J. Du, Z. Wei, Z. Chen, C. Shu, Z. Wang, M. Li, Numerical investigation of adhesion dynamics of a deformable cell pair on an adhesive substrate in shear flow. Physical Review E, 2019: 100(3): 033111.

[23] Z.W. Cai, Z. Zong, Z. Chen, L. Zhou, C. Tian. Multiphase Godunov-Type Smoothed Particle Hydrodynamics Method with Approximate Riemann Solvers. International Journal of Computational Methods, 2019; 16 (2): 1846010.

[22] Z. Chen, C. Shu, D. Tan, X.D. Niu, Q.Z. Li. Simplified Multiphase Lattice Boltzmann Method for Simulating Multiphase Flows with Large Density Ratios and Complex Interfaces. Physical Review E, 2018; 98(6): 063314.

[21] Z. Chen, C. Shu, D. Tan. High-order simplified thermal lattice Boltzmann method for incompressible thermal flows. International Journal of Heat and Mass Transfer, 2018; 127: 1-16.

[20] Z. Chen, C. Shu, D. Tan. Highly accurate simplified lattice Boltzmann method. Physics of Fluids, 2018; 30 (10): 103605. (Editor’s pick)

[19] Z. Chen, C. Shu, D. Tan, C. Wu. On Improvements of Simplified and Highly Stable Lattice Boltzmann Method: Formulations, Boundary Treatment, and Stability Analysis. International Journal for Numerical Methods in Fluids, 2018; 87 (4): 161-179.

[18] Z. Chen, C. Shu, D. Tan. Immersed Boundary-Simplified Lattice Boltzmann Method for Incompressible Viscous Flows. Physics of Fluids, 2018; 30 (5): 053601.

[17] Z. Chen, C. Shu, D. Tan. The Simplified Lattice Boltzmann Method on Non-uniform Meshes. Communications in Computational Physics, 2018; 23 (4): 1131-1149.

[16] L.M. Yang, Z. Chen, C. Shu, W.M. Yang, L.Q. Zhang. Improved fully implicit discrete-velocity method for efficient simulation of flows in all flow regimes. Physical Review E, 2018; 98(6): 063313.

[15] L.M. Yang, C. Shu, W.M. Yang, Z. Chen, H. Dong. An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes. Physics of Fluids, 2018; 30 (6): 062005.

[14] L. Zou, G.X. Zhu, Z. Chen, Y.G. Pei, Z. Zong. Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model. International Journal of Computational Methods, 2018; 15 (02): 1850008.

[13] C. Wu, B. Shi, C. Shu, Z. Chen. Third-order Discrete Unified Gas Kinetic Scheme for Continuum and Rarefied Flows: Low-speed Isothermal Case. Physical Review E, 2018; 97 (2): 023306.

[12] G.X. Zhu, L. Zou, Z. Chen, A.M. Wang, M.B. Liu. An Improved SPH Model for Multiphase Flows with Large Density Ratios. International Journal for Numerical Methods in Fluids, 2018; 86 (2), 167-184.

[11] Z. Chen, C. Shu, D. Tan. Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids, 2017; 29 (5): 053601.

[10] Z. Chen, C. Shu, D. Tan. A Truly Second-order and Unconditionally Stable Thermal Lattice Boltzmann Method. Applied Sciences, 2017; 7 (3): 277.

[9] Z. Chen, C. Shu, D. Tan. A Simplified Thermal Lattice Boltzmann Method without Evolution of Distribution Function. International Journal of Heat and Mass Transfer, 2017; 105: 741-757.

[8] Z. Chen, C. Shu, Y. Wang, L. M. Yang, D. Tan. A Simplified Lattice Boltzmann Method without Evolution of Distribution Function. Advances in Applied Mathematics and Mechanics, 2017; 9 (1):1-22.

[7] H.Z. Yuan, Z. Chen, C. Shu, Y. Wang, X.D. Niu, S. Shu. A free energy-based surface tension force model for simulation of multiphase flows by level-set method. Journal of Computational Physics, 2017; 345, 404-426.

[6] Y. Sun, C. Shu, Y. Wang, C.J. Teo, Z. Chen. An Immersed Boundary-Gas kinetic Flux Solver for Simulation of Incompressible Flows. Computers & Fluids, 2017; 142, 45-56.

[5] L. Zhou, Z. W. Cai, Z. Zong, Z. Chen*. An SPH pressure correction algorithm for multiphase flows with large density ratio. International Journal for Numerical Methods in Fluids, 2016; 81: 765-788.

[4] Z. Chen, Z. Zong, M.B. Liu, L. Zou, H.T. Li, C. Shu. An SPH Model for Multiphase Flows with Complex Interfaces and Large Density Differences. Journal of Computational Physics, 2015; 283:169-188.

[3] Z. Chen, Z. Zong, M.B. Liu, H.T. Li. A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. International Journal for Numerical Methods in Fluids, 2013; 73/9: 813-829.

[2] H.T. Li, J. Li, Z. Zong, Z. Chen. Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Engineering, 2013, 82: 20-31.

[1] Z. Chen, Z. Zong, H.T. Li, J. Li. An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Engineering, 2013; 59: 129-141.