蔡涛
副教授
所属大学: 上海交通大学
所属学院: 机械与动力工程学院
个人简介
教育背景 2015.12~2016.06, 釜山国立大学(韩国),动力工程及工程热物理专业,博士交换生。 2014.09~2019.03, 上海交通大学,动力工程及工程热物理专业,博士。 2012.09~2014.06, 华中科技大学 ,动力工程专业,硕士。 2008.09~2012.06, 华中科技大学,能源与动力工程专业,本科。
工作经历 2022.01~至今,上海交通大学,叶轮机械研究所,副教授 2021.08~2023.04,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Eco-friendly Smart Ship Parts Technology Innovation Center,研究教授(Research Professor) 2020.09~2021.07,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Eco-friendly Smart Ship Parts Technology Innovation Center,副研究员 2019.09~2020.08,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Rolls-Royce Thermal Research Center,副研究员 2019.04~2019.08,马格德堡大学(Otto von Guericke University Magdeburg (德国)),博士后研究员
科研项目 1. 韩国国家研究基金会(NRF),高温环境下基于磷光的温度/速度/压力/应力非接触测量研究,人民币约200万,2019-2023,NRF. 2019H1D3A1A0107033,主持。 2. 韩国国家研究基金会(NRF),环保智能船舶零部件技术创新RLRC项目,人民币约1 亿,2020-2027,NRF. 2020R1A5A8018822,参与。
软件版权登记及专利 [1] 发明专利: 一种温度压力联合测量技术及测量方法: 中国, ZL201710706867.2 [2] 发明专利: 一种叶轮装置: 中国, CN103115021B [3] 发明专利: Temperature sensing film and its measurement system: 韩国, KR2021/003322 [4] 发明专利: Temperature-sensitive film and measurement system using thereof:美国, P20200125US-02 [5] 发明专利: Method for manufacturing temperature and stress-sensitive film:韩国, KR2021/005007
荣誉奖励 2022.02,National Research Foundation (South Korea) ,BP fellow 2021.11,上海市工程热物理学会,优秀博士学位论文 2020.10,第五届韩国 KSME-SEMES 开放挑战赛,铜奖(带队老师) 2019.06,National Research Foundation (South Korea),KRF fellow 2018.12,上海交通大学机械学院,学术之星 2016.11,教育部 (中国),国家奖学金(博士) 2013.11,教育部 (中国),国家奖学金(硕士) 2012.12,湖北省教育厅,湖北省优秀论文
研究领域
一、先进磷光测量方法与技术 1)热物理参数磷光响应原理; 2)高温环境下基于磷光的先进非接触测量方法与技术,包括温度场,压力场,速度场,应力/应变场等; 3)多参数场测量技术:流场温度-速度同步测量技术;壁面温度-压力同步测量技术;壁面温度-应变同步测量技术 ;
二、工程及应用 1)智能传感器(柔性光学皮肤); 2)燃气轮机/航空发动机热物理参数测试技术,燃料电池的热传感和热管理等; 3)AI辅助的高频高分辨率数据重构技术。
学术兼职
担任Advanced Materials,Applied Physics Letters,Optics and Lasers in Engineering,Measurement Science and Technology,Materials Research Express,Journal of Visualization,Engineering Research Express,Methods and Applications in Fluorescence,Review of Scientific Instruments,Sensors,Nanotechnology,Materials 等SCI期刊审稿人。
第19届国际流动显示(ISFV)会议组委会委员。 第6届国际流动-结构-噪声作用与控制(FSSIC)会议组委会委员。
近期论文
[32] Jung J, Zhang S, Cai T, et al. Spatio-temporal resolution enhancement of 2D lifetime-based phosphor thermometry using deep neural networks. Measurement of Science and Technology. [31] Shin, H., Zhang, W., Cai, T., Kim, M., Ha, C. S., & Kim, K. C. Fabrication of Micro-size Encapsulated Phosphor Particles and Its Application of Temperature-velocity Measurement in Water. Sensors and Actuators A: Physical. [30] Roadmap on Imaging Techniques, Measurement of Science and Technology: Section 9: Phosphor thermometry (邀稿) 已发表: [29] Jung, J., Kim, M., Cai, T.*, Liu, Y., & Kim, K. C.* (2023). Data recovery of 2D lifetime-based phosphor thermometry using deep neural networks. Measurement Science and Technology, 34(7), 075201. (IF=2.398) [28] Mohammadshahi, S., Samsam-Khayani, H., Chen, B., Cai, T., & Kim, K. C. (2023). Visualization of two-dimensional temperature field on a plate with normal impingement of a supersonic jet. Journal of Visualization, 1-10. (IF=1.97) [27] Cai, T., Chen, B., Han, J., Kim, M., Yeom, E., & Kim, K. C. (2022). Effect of excitation duration on phosphorescence decay and analysis of its mechanisms. Journal of Luminescence, 252, 119423. (IF=4.17) [26] Cai T, Han J, Kim M, et al. Adaptive window technique for lifetime-based temperature and velocity simultaneous measurement using thermographic particle tracking velocimetry with a single camera[J]. Experiments in Fluids, 2022, 63(10): 1-11. (IF=2.797) [25] Cai T, Jung J, Li D, et al. Simultaneous Sensing of Oxygen Concentration and Temperature Utilizing Rise and Decay of the Phosphorescence of Y2O3: Eu3+ in High-temperature Environments[J]. Sensors and Actuators B: Chemical, 2022: 132394. (IF= 9.221) [24] Cai T, Li D, Jung J, et al. Two-dimensional visualization of oxygen concentration field at high-temperature environment using phosphor Y2O3: Eu3+[J]. Sensors and Actuators B: Chemical, 2022, 364: 131884. (IF= 9.221) [23] Cai T, Han J, Kim M, et al. Two-dimensional lifetime-based kHz surface temperature measurement technique using phosphor thermometry[J]. Applied Physics Letters, 2021, 119(24): 244101. (IF= 3.971) [22] Cai T, Yan Y Z, Jung J, et al. Phosphorescence-based temperature and tactile multi-functional flexible sensing skin[J]. Sensors and Actuators A: Physical, 2021, 332: 113205. (IF= 4.29) [21] Park Y, Cai T, Kim K. A Study on Non-contact Surface Temperature Field Measurement of a Body Immerged in Water Using Thermographic Phosphor Thermometry[J]. Journal of the Korean Society of Visualization, 2020, 18(3): 61-68. [20] Cai T, Park Y, Mohammadshahi S, et al. Rise time-based phosphor thermometry using Mg4FGeO6: Mn4+[J]. Measurement Science and Technology, 2020, 32(1): 015201. (IF= 2.398) [19] Mohammad S, Samsam H, Cai T, et al. Experimental and numerical study on flow characteristics and heat transfer of an oscillating jet in a channel[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108701. (IF=2.789) [18] Cai T, Deng Z, Park Y, et al. Acquisition of kHz-frequency two-dimensional surface temperature field using phosphor thermometry and proper orthogonal decomposition assisted long short-term memory neural networks[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120662. (IF=5.584) [17] Cai T Yan Y,et al. Phosphorescence-Based Flexible and Transparent Optical Temperature-Sensing Skin Capable of Extreme Environments[J]. ACS Applied Polymer Materials, 2021, 3(5): 2461-2469. (IF= 4.089) [16] Mohammad S, Samsam-Khayani H, Cai T, et al. Experimental study on flow characteristics and heat transfer of an oscillating jet in a cross flow[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121208. (IF=5.584) [15] Cai T, Lee T, et al. Simultaneous measurement of 2D temperature and strain fields based on thermographic phosphor and digital image correlation[J]. Measurement Science and Technology, 2021. (IF= 2.398) [14] Cai T, Khodsiani M, Hallak B, et al. Phosphor thermometry at the surface of single reacting large-diameter spherical coke particles to characterise combustion for packed bed furnaces[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4225-4232. (IF= 3.757) [13] 蔡涛、赵晓峰、刘应征、彭迪. 基于磷光光学特性的热障涂层热力参数测量技术[J]. 中国材料进展, 2020, v.39;No.466(10):26-37 (受邀综述) [12] Guo S†, Cai T†, et al. Generalization of the quantitative stress-intensity relationship of mechanoluminescent sensor SrAl2O4: Eu2+, Dy3+ in elastic domain[J]. Measurement Science and Technology, 2019. (IF= 2.398) [11] Li Y†, Cai T†, et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia[J]. Sensors and Actuators B: Chemical, 2020, 308: 127666. (IF=9.22) [10] Cai T, Li Y, Guo S, et al. Pressure effect on phosphor thermometry using Mg4FGeO6: Mn[J]. Measurement Science and Technology, 2019, 30(2): 027001. (IF= 2.398) [9] Cai T, Guo S, Li Y, et al. Ultra-sensitive mechanoluminescent ceramic sensor based on air-plasma-sprayed SrAl2O4: Eu2+, Dy3+ coating[J]. Sensors and Actuators A: Physical, 2020, 315: 112246. (IF=4.29) [8] Peng D, Zhong Z, Cai T, et al. Integration of pressure-sensitive paint with persistent phosphor: A light-charged pressure-sensing system[J]. Review of Scientific Instruments, 2018, 89(8): 085003. (IF=1.859) [7] Cai T, Guo S, Li Y, et al. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model[J]. Review of Scientific Instruments, 2018, 89(4). (IF=1.859) [6] Cai T, Peng D, Yavuzkurt S, et al. Unsteady 2-D film-cooling effectiveness behind a single row of holes at different blowing ratios: Measurements using fast-response pressure-sensitive paint[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1325-1340. (IF=5.584) [5] Peng D, Yang L, Cai T, et al. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing[J]. Sensors, 2016, 16(10): 1490. (IF=3.576) [4] Cai T, Peng D, Liu Y Z, et al. A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera[J]. Experimental Thermal and Fluid Science, 2017, 80: 53-60. (IF= 3.57) [3] Cai T, Kim D, Kim M, et al. Effect of surface moisture on chemically bonded phosphor for thermographic phosphor thermometry[J]. Measurement Science and Technology, 2016, 27(9): 097003. (IF= 2.398) [2] Cai T, Dong K, Kim M, et al. Two-dimensional thermographic phosphor thermometry in a cryogenic environment[J]. Measurement Science and Technology, 2016, 28(1). (IF= 2.398) [1] Cai T, Peng D, Liu Y Z, et al. A correction method of thermal radiation errors for high-temperature measurement using thermographic phosphors[J]. Journal of Visualization, 2016, 19(3): 383-392. (IF= 1.974)
会议文章: [1] Cai T†, Zhang WJ, Kim M, et al. Fabrication of Micro-size Encapsulated Phosphor Particles and Its Application of Temperature-velocity Measurement in Water [C]. KSME Annual Meeting2022, International Sessio, Jeju, Korea, 2022. (邀请报告) [2] Cai T†, Han J, Kim KC, et al. Adaptive Window Technique For Lifetime-Based Temperature And Velocity Simultaneous Measurement Using Thermographic Particle Tracking Velocimetry With A Single Camera. The 13th Pacific Symposium on Flow Visualization and Image Processing, Shinjuku, Japan, 2022. [3] Cai T†, Han J, Kim KC, et al. Adaptive Window Technique For Lifetime-Based Temperature And Velocity Simultaneous Measurement Using Thermographic Particle Tracking Velocimetry With A Single Camera. 2nd International Conference on Phosphor Thermometry, Magdeburg, Germany, 2022. [4] Cai T†, Kim M, Chung W, et al. Development of phosphorescence-based in-situ temperature and strain measurement technology for SOFC cell monitoring [C]. 6th Asian SOFC Symposium and Exhibition, Jeju, Korea, 2021. [5] Khodsiani M., Abram C, Cai T et al. Temperature measurements on the ash layer surface of reacting large-diameter coke particles [C]. 30. Deutscher Flammentag. Hannover-Garbsen, Germany, 2021 [6] Cai T†, Lee, T, Kim K, et al. Simultaneous Strain and Temperature Field Measurement Technique based on Digital Image Correlation and Thermographic Phosphor Thermometry [C]. 25th International Conference of Theoretical Applied and Experimental Mechanics, Milano, Italy, 2021. [7] Cai T, Khodsiani M, Hallak B, et al. Phosphor thermometry at the surface of single reacting large-diameter spherical coke particles to characterise combustion for packed bed furnaces[C]. 38th International Symposium on Combustion, Adelaide, Australia, 2021 [8] Cai T†, Yan Y†, Kim K, et al. Phosphorescence-based Flexible Optical Temperature Sensing Skin: Capable of Extreme Environments [C].2nd International Conference on Phosphor Thermometry, Magdeburg, Germany, 2020. [9] Cai T, Peng D, Yang L X, et al. Effect of oxygen on phosphorescence for different lanthanide ions Ln3+ doped yttria-stabilized zirconia [C].1st International Conference on Phosphor Thermometry, Glasgow, UK,2018. [10] Li Y Z, Cai T, Peng D, et al. Development of a dual-component phosphor system for simultaneous pressure and temperature measurements [C].1st International Conference on Phosphor Thermometry, Glasgow, UK,2018. [11] Cai T, Kim D, Kim M, et al. Assessment of Various Lifetime Based Post-processing Methods on Thermographic Phosphor Thermometry[C]. KSV, 2016, 04: 46-50. (Best Paper Award)