李钟号 照片

李钟号

教授

所属大学: 山东大学

所属学院: 化学与化工学院

邮箱:
zhonghaoli@sdu.edu.cn

个人主页:
https://faculty.sdu.edu.cn/lizhonghao/zh_CN/index.htm

个人简介

2013.11-今 山东大学化学与化工学院,教授 2011.12-2013.10 山东大学材料科学与工程学院,教授 2008.2-2011.11 山东大学材料科学与工程学院,副教授 2006.9-2007.12 德国波茨坦大学以及马普胶体与界面研究所,博士后 2005.9-2006.9 法国波尔多一大以及法国国家研究中心,博士后 2002.9-2005.7 中科院化学所,物理化学专业,博士,(导师:韩布兴院士)

研究领域

离子液体的性质及其纳米材料的调控 环境友好型溶剂与纳米催化剂 电催化与可再生能源 电解水、氮气电还原

近期论文

1.T. Sang, H. Xu, W. Wang, D. Ji, J. Hao, Z. Li*, Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural. Chem. Commun. 2024, 60, 5868-5871. 2.W. Wang, H. Xu, T. Sang, D. Ji, J. Hao, Z. Li*, CuO-Ni(OH)2 heterostructure nanosheets: a high-performance electrocatalyst for 5-hydroxymethylfurfural oxidation. Chem. Commun. 2024, 60, 4214-4217. 3.J. Bi, H. Xu, W. Wang, T. Sang, A. Jiang, J. Hao, Z. Li*, Cu2P7-CoP Heterostructure nanosheets enable high-Performance of 5-hydroxymethylfurfural electrooxidation. Chem. Eur. J., 2023, 29(42), e202300973. 4.H. Xu, J. Bi, T. Sang, W. Wang, J. Hao, Z. Li*, Mn-doped Ni2P: nanocrystal-decorated amorphous nanosheets for efficient electrooxidation of 5-hydroxymethylfurfural. Chem. Commun. 2023, 59, 8440-8443. 5.J. Bi, H. Ying, J. Hao, Z. Li*, Application of metal chalcogenide-based anodic electrocatalyst toward substituting oxygen evolution reaction in water splitting. Curr. Opin. Electrochem. 2022, 33, 100963. 6.J. Bi, H. Ying, H. Xu, X. Zhao, X. Du, J. Hao, Z. Li*, Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem. Commun. 2022, 58, 7817-7820. 7. H. Ying, J. Bi, H. Xu, G. Wu, X. Wu, J. Hao, Z. Li*, Mn-doped Bi2O3 nanosheets from a deep eutectic solvent toward enhanced electrocatalytic N2 reduction. ACS Sustainable Chem. Eng. 2022, 10, 6766-6774. 8.C. Zhang, B. Xin, T. Chen, H. Ying, Z. Li*, J. Hao, Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction. Green Energy Environ. 2022, 7, 1217-1227. 9.H. Ying, T. Chen, C. Zhang, J. Bi, Z. Li*, J. Hao, Regeneration of porous Fe3O4 nanosheets from deep eutectic solvent for high-performance electrocatalytic nitrogen reduction. J. Colloid Interface Sci. 2021, 602, 64-72. 10.T. Chen, H. Ying, C. Zhang, J. Bi, Z. Li*, J. Hao, Engineering an Fe2O3/FeS hybrid catalyst from a deep eutectic solvent for highly efficient electrocatalytic N-2 fixation. Chem. Commun. 2021, 57, 6688-6691. 11.H. Ying, C. Zhang, T. Chen, X. Zhao, Z. Li*, J. Hao, A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnol. 2020, 31, 505402. 12. T. Chen, S. Liu, H. Ying, Z. Li*, J. Hao, Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction. Chem. Asian J. 2020, 15, 1081-1087. 13. S. Liu, T. Chen, H. Ying, Z. Li*, J. Hao, Deep Eutectic Solvent-Mediated Construction of Oxygen Vacancy-Rich Fe-Based Electrocatalysts for Efficient Oxygen Evolution Reaction. Adv. Sustainable Syst. 2020, 4, 2000038. 14. Chenyun Zhang, Shuai Liu, Tingting Chen, Zhanghao Li*, Jingcheng Hao, “Oxygen vacancy-engineered Fe2O3 nanocubes via a task-specific ionic liquid for electrocatalytic N2 fixation”, Chem. Commun., 2019, 55, 7370-7373. 15.Chenyun Zhang, Tingting Chen, Hong Zhang, Zhonghao Li *, Jingcheng Hao, “Hydrated-Metal-Halide-Based Deep-Eutectic-Solvent-Mediated NiFe Layered Double Hydroxide: An Excellent Electrocatalyst for Urea Electrolysis and Water Splitting”, Chemistry–An Asian Journal, 2019, 14(17): 2995-3002. 16. Shuai Liu, Chenyun Zhang, Baohua Zhang, Zhonghao Li*, Jingcheng Hao, “All-In-One Deep Eutectic Solvent toward Cobalt-Based Electrocatalyst for Oxygen Evolution Reaction”, ACS Sustainable Chemistry & Engineering, 2019, 7(9), 89648-8971. 17. Chenyun Zhang, Baohua Zhang, Zhonghao Li*, Jingcheng Hao, “Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction” ACS Applied Energy Materials, 2019, 2(5) 3343-3351.