李坤朋 照片

李坤朋

教授

所属大学: 山东大学

所属学院: 生命科学学院

邮箱:
likp@sdu.edu.cn

个人主页:
https://faculty.sdu.edu.cn/likunpeng/zh_CN/index.htm

个人简介

个人简介 李坤朋,山东大学生命科学学院教授、博生生导师,课题组组长 实验室一直从事玉米株型、籽粒发育和耐逆相关基因的克隆与功能研究,取得了一系列创新性研究成果,在PNAS,New Phytologist,Plant Physiology,Plant Journal,Proteomics等主流期刊发表高水平SCI论文20余篇,授权发明专利10余项。先后承担国家自然基金-青年项目和面上项目、国家转基因重大专项、国家重点研发计划-国际合作专项、山东省重大创新工程课题、山东省自然科学基金和山东省良种工程等项目资助。教学方面:本人主讲本科生主干课程《细胞生物学》和选修课《细胞生物学专题》;研究生课程《植物细胞生物学技术》。

研究领域

个人简介 李坤朋,山东大学生命科学学院教授、博生生导师,课题组组长 实验室一直从事玉米株型、籽粒发育和耐逆相关基因的克隆与功能研究,取得了一系列创新性研究成果,在PNAS,New Phytologist,Plant Physiology,Plant Journal,Proteomics等主流期刊发表高水平SCI论文20余篇,授权发明专利10余项。先后承担国家自然基金-青年项目和面上项目、国家转基因重大专项、国家重点研发计划-国际合作专项、山东省重大创新工程课题、山东省自然科学基金和山东省良种工程等项目资助。教学方面:本人主讲本科生主干课程《细胞生物学》和选修课《细胞生物学专题》;研究生课程《植物细胞生物学技术》。 博士生招生专业:植物学、生物与医药(专博) 硕士生招生专业:细胞生物学、植物学、遗传学和生物与医药(专硕) 个人联系方式:邮箱:likp@sdu.edu.cn;电话:13589046759 科研方向: 1、玉米株型和籽粒发育重要功能基因的发掘与功能研究 玉米植株构型和种子发育是决定产量的关键性状,是分子遗传学和高产育种关注的重点领域。实验室以玉米株型和籽粒发育突变体为材料,综合运用遗传学、分子生物学、生物信息学、生物化学、转基因过表达和基因编辑等技术手段,克隆玉米株型和种子发育功能基因,解析其生物学功能和调控网络,促进对玉米株型和种子发育遗传调控网络的解析,为玉米产量和品质等重要农艺性状的遗传改良提供基因资源和理论基础,同时创制优异种质材料,服务我国玉米育种。 2、玉米耐逆功能基因的发掘与作用机制研究 我国农业生产环境复杂多变,发掘玉米耐逆(盐碱、干旱和低磷)关键基因,解析其作用机制,通过分子育种技术精准定向培育玉米耐逆新品种,是保障玉米高产稳产和国家粮食安全的重要举措。我们以玉米耐逆突变体和种质资源为材料,依托实验室构建的基因图位克隆和转基因及基因编辑平台,采用正、反向遗传学相结合的技术手段,挖掘玉米耐逆功能基因,鉴定基因功能、解析其调控耐逆性状的分子机制和遗传网络,为玉米耐逆分子育种提供基因资源和理论支撑。

近期论文

1. Liu B#, Xu C#, He Q#, Zhang K#, Qi S, Jin Z, Cheng W, Ding Z, Chen D, Zhao X, Zhang W, Zhang K, Li KP* (通讯作者) Membralin is required for maize development and defines a branch of the endoplasmic reticulum–associated degradation pathway in plants. PNAS (USA), 2024, 121: e2406090121. https://doi.org/10.1073/pnas.2406090121 2. Wu JW, Zheng GM, Zhang L, Zhao YJ, Yan RY, Ren RC, Wei YM, Li KP, Zhang XS, Zhao XY, N6-methyladenosine transcriptome-wide profiles of maize kernel development. Plant Physiol. 2024, doi: 10.1093/plphys/kiae451. 3. Zhang K#, Wang F#, Liu B#, Xu C, He Q, Cheng W, Zhao X, Ding Z, Zhang W, Zhang KW, Li KP* (通讯作者) ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytol., 2021, 229: 2163-2178. 4. Zhang K#, Guo L#, Cheng W#, Liu B, Li W, Wang F, Xu C, Zhao X, Ding Z, Zhang KW, Li KP* (通讯作者) SH1-dependent maize seed development and starch synthesis via modulating carbohydrate flow and osmotic potential balance. BMC Plant Biol., 2020, 20: 264. 5. Li W#, Liu B#, Zhao M, Zhang K, He Q, Zhao X, Cheng W, Ding Z, Zhang KW, Li KP* (通讯作者) Isolation and characterization of a 295‑bp strong promoter of maize high‑affinity phosphate transporter gene ZmPht1; 5 in transgenic Nicotiana benthamiana and Zea mays. Planta, 2020, 251: 106. 6. Jiang P#, Zhang K#, Ding Z, He Q, Li W, Zhu S, Cheng W, Zhang KW and Li KP* (通讯作者), Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnol. 2018, 18: 59. 7. Cheng C, Zhang Y, Chen X, Song J, Guo Z, Li KP and Zhang K, Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breeding, 2018, 38: 19. 8. Zhang K, Song J, Chen X, Yin T, Liu C, Li KP and Zhang J, Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica, 2016, 211: 1-14. 9. Zhang H#, Hou J#, Jiang P, Qi S, Xu C, He Q, Ding Z, Wang Z, Zhang K and Li KP*(通讯作者), Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco. Front. Plant Sci. 2016, 7: 42. 10. Hou J#, Jiang P#, Qi S#, Zhang K, He Q, Xu C, Ding Z, Zhang K and Li KP* (通讯作者), Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants. Plos One, 2016, 11(4): e0154041. 11. Zhang K, Liu H, Song J, Wu W, Li KP, Zhang J, Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling. BMC Plant Biol. 2016, 16(1):129. 12. Li KP#* (通讯作者), Xu C#, Fan W, Zhang H, Hou J, Yang A and Zhang K, Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiol. Biochem. 2014, 83: 232-242. 13. Pei L, Jin Z, Li KP, Yin HY, Wang JM and Yang AF, Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiol Biochem. 2013, 70: 221-234. 14. Pei L, Wang JM, Li KP, Li YJ, Li B, Gao F and Yang AF, Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize,Plos One, 2012,7: e43501. 15. Li ZX, Xu CZ, Li KP, Yan S, Qu X and Zhang JR, Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone, BMC Plant Biol. 2012, 12:89. 16. Li KP#, Xu CZ#, Zhang JR. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene, 2011, 485: 106-113. 17. Sun QH, Gao F, Zhao L, Li KP, Zhang JR. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol., 2010, 10: 90. 18. Li KP, Xu CZ, Li ZX, Zhang KW, Yang AF, Zhang JR, Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and low-P-tolerant mutant reveal root characteristics associated with P-efficiency. Plant J., 2008, 55: 927-939. 19. Li KP, Xu CZ, Li ZX, Zhang KW, Yang AF, Zhang JR, Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 2007, 7: 1501-1512. 20. Li KP, Xu ZP, Zhang KW, Yang AF, Zhang JR, Efficient production and characterization for maize inbred lines with low-phosphorus tolerance. Plant Sci., 2007, 172: 255-264. 21. Xu Z, Li KP, Liu Z, Zhang K and Zhang J, Correlations between Kinetic Parameters of Phosphate Uptake and Internal Phosphorus Concentrations in Maize (Zea mays L.) Plants: Making It Possible to Estimate the Status of Phosphate Uptake According to Shoot Phosphorus Concentrations. Communications in Soil Science and Plant Analysis, 2007, 38:2519-2533.