个人简介
田博学,研究员,博士生导师,于2020年6月加入清华大学药学院,以及清华-北大生命科学联合中心。田博学2008年本科毕业于华东理工大学,2009年硕士毕业于瑞典厄勒布鲁大学。2012年10月博士毕业于爱尔兰国立大学-高威,师从Leif A. Eriksson。2013年2月进入美国加州大学旧金山分校 Matthew P. Jacobson实验室从事博士后研究。田博学博士主要从事计算化学和计算生物学相关研究。论文发表在PNAS、JACS、PLOS computational biology等学术期刊。
研究领域
课题组开发并且应用物理化学、计算化学、计算生物学、人工智能等方法,解决生物化学和药学相关领域的关键问题。 1)化学反应预测:利用量子化学计算方法生成数据,并利用这些数据训练人工智能模型,预测反应产物 2)药物设计:利用计算化学与人工智能方法设计小分子药物和抗体药物 3)全细胞模型:融合多组学数据,建立基于数据的全细胞模型,预测外来分子与细胞的相互作用
近期论文
J. M. Bruining, Y. Wang, F. Oltrabella, B. Tian, H. Liu, P. Bhattacharya, S. Guo, J. M. Holton, R. J. Fletterick, M. P. Jacobson, P. M. England. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol. 2019, 26, 1-12. F. J. Cortez, P. Nguyen, C. Truillet, B. Tian, K. M. Kuchenbecker, M. J Evans, P. Webb, M. P Jacobson, R. J. Fletterick, P. M. England. Development of 5N-Bicalutamide, A High-affinity Reversible Covalent Antiandrogen. ACS Chem. Biol. 2017, 12, 2934-2939. B. Tian, C. D. Poulter, M. P. Jacobson. Defining the Product Chemical Space of Monoterpenoid Synthases. PLOS Comp. Bio. 2016, 12(8), e1005053. J. Y. Chow, B. Tian (Co-first author), G. Ramamoorthy, B. S. Hillerich, R. D. Seidel, S. C. Almo, M. P. Jacobson, C. D. Poulter. Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus. Proc. Natl. Acad. Sci. USA, 2015, 112, 5661-5666. G. Ramamoorthy, M. L. Pugh, B. Tian, R. M. Phan, L. B. Perez, M. P. Jacobson, C. D. Poulter. Synthesis and Enzymatic Studies of Bisubstrate Analogues for Farnesyl Diphosphate Synthase. J. Org. Chem. 2015, 80, 3902-3913. B. Tian, F. H. Wallrapp, G. L. Holiday, J. Y. Chow, P. C. Babbitt, C. D. Poulter, M. P. Jacobson. Predicting the functions and specificity of triterpenoid synthases: A mechanism-based multi-intermediate docking approach. PLOS Comp. Bio. 2014, 10, e1003874. S. Krishnan, R. M. Miller, B. Tian, R. D. Mullins, M. P. Jacobson, J. Taunton. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 2014, 136, 12624-12630. M.P. Jacobson, C. Kalyanaraman, S. Zhao, B. Tian. Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Trends Biochem. Sci. 2014, 39, 363-371. B. Tian, F. H. Wallrapp, C. Kalyanaraman, S. Zhao, L. A. Eriksson, M. P. Jacobson. Predicting Enzyme-Substrate Specificity with QM/MM Methods: A Case Study of the Stereo-specificity of D-glucarate Dehydratase. Biochemistry 2013, 52, 5511-5513. B. Tian, N. An, W. P. Deng, L. A. Eriksson. Catalysts or Initiators?-Beckmann Rearrangement Revisited. J. Org. Chem. 2013, 78, 6782-6785. N. An, B. Tian, L. A. Eriksson, W. P. Deng. Mechanistic Insight into Self-Propagation of Organo-Mediated Beckmann Rearrangement: A Combined Experimental and Computational Study. J. Org. Chem. 2013, 78, 4297-4302. B. Tian, L. A. Eriksson. Catalytic Mechanism and Product Specificity of Oxidosqualene-Lanosterol Cyclase: A QM/MM Study. J. Phys. Chem. B 2012, 116, 13857-13862. B. Tian, E. Erdtman, L. A. Eriksson. Catalytic Mechanism of Porphobilinogen Synthase: The Chemical Step Revisited by QM/MM Calculations. J. Phys. Chem. B 2012, 116, 12105-12112. B. Tian, L. A. Eriksson. Catalytic Mechanism and Roles of Arg197 and Thr183 in the Staphylococcus aureus Sortase A Enzyme. J. Phys. Chem. B 2011, 115, 13003-13011. B. Tian, L. A. Eriksson. Structural changes of Listeria Monocytogenes Sortase A: A key to understanding the catalytic mechanism. Proteins: Struct., Funct., Bioinf. 2011, 79, 1564-1572. B. Tian, L. A. Eriksson. Catalytic Roles of Active Site Residues in 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase: An ONIOM/DFT Study. J. Phys. Chem. B 2011, 115, 1918-1926. B. Tian, E. Eriksson, L. A. Eriksson. Can range-separated hybrid DFT functionals predict low-lying excitations? A Tookad case study. J. Chem. Theory Comput. 2010, 6, 2086-2094. B. Tian, Y. Tu, Ǻ. Strid, L. A. Eriksson. Hydroxylation and Ring-opening Mechanism of an Unusual Flavoprotein Monooxygenase, 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase: A Theoretical Study. Chem. Eur. J. 2010, 16, 2557-2566.