陈克旺 照片

陈克旺

讲师

所属大学: 南京信息工程大学

所属学院: 数学与统计学院

邮箱:
kewang.chen@uvm.edu

个人主页:
http://web2.nuist.edu.cn:8080/jszy/Professor.aspx?id=2386

个人简介

2015.08 - 2019.06, 博士, 美国佛蒙特大学.

2013.09 - 2015.07, 硕士, 南京信息工程大学.

2009.09 - 2013.07, 本科, 南京信息工程大学

研究领域

1) 微分方程理论及应用 2) 交叉学科中数学模型研究及应用

近期论文

1. Chen, Kewang; Liu, Wenjun; Yu, Jun. General decay for a nonlinear Bresse system with memory conditions. Appl.Anal. 2019 (accepted).

2. Chen, Kewang; Gross, Laura K.; Yu, Jun; Yang, Yi. On a generalized free-interface model of solid combustion. J. Engrg. Math. 117 (2019), 31--45.

3. Yu, Jun; Chen, Kewang; Gross, Laura K. Asymptotic and numerical analysis of dynamics in a generalized free-interfacial combustion model. Finite difference methods, 646--653, Lecture Notes in Comput. Sci., 11386, Springer, Cham, 2019.

4. Liu, Wenjun; Chen, Kewang; Yu, Jun. Asymptotic stability for a non-autonomous full von Karman beam with thermo-viscoelastic damping. Appl. Anal. 97 (2018), no. 3, 400--414.

5. Chen, Kewang; Liu, Wenjun; Yu, Jun. Existence and general decay of a transmission problem for the plate equation with a memory condition on the boundary. Z. Angew. Math. Phys. 67 (2016), no. 1, Art. 12, 39 pp.

6. Liu, Wenjun; Chen, Kewang; Yu, Jun. Extinction and asymptotic behavior of solutions for the omega-heat equation on graphs with source and interior absorption. J. Math. Anal. Appl. 435 (2016), no. 1, 112--132.

7. Liu, Wenjun; Chen, Kewang. Existence and general decay for nondissipative hyperbolic differential inclusions with acoustic/memory boundary conditions. Math. Nachr. 289 (2016), no. 2-3, 300--320.

8. Liu, Wenjun; Chen, Kewang; Yu, Jun. Existence and general decay for the full von Karman beam with a thermo-viscoelastic damping, frictional dampings and a delay term. IMA J. Math. Control Inform. 34 (2017), no. 2, 521--542.

9. Liu, Wenjun; Chen, Kewang. Blow-up of solutions for the sixth-order thin film equation with positive initial energy. Pramana-journal of physics. 85(2015), no.4, 577-582.

10. Liu, Wenjun; Chen, Kewang. Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions. Z. Angew. Math. Phys. 66 (2015), no. 4, 1595--1614.

11. Liu, Wenjun; Chen, Kewang. Chaotic behavior in a new fractional-order love triangle system with competition. J. Appl. Anal. Comput. 5 (2015), no. 1, 103--113.

12. Liu, Wenjun; Chen, Kewang. The functional variable method for finding exact solutions of some non- linear time-fractional differential equations. Pramana. 81(2013), no.3, 377-384.