高涛
博士 副教授
个人简介
高涛,博士,副教授。于2016年6月获南京大学生物学博士学位,同年8月入选全国“博士后创新人才支持计划”,2019年入职南京师范大学,同年入选江苏省“双创博士”、南京师范大学“中青年领军人才”,2021年入选江苏省“双创团队”核心成员,已主持国家级和省部级项目5项,参编Springer、Elsevier专著4部/章节,发表SCI期刊论文60余篇,包括Nat. Commun.、CCS Chem.、Cell Commun. Signal.、Nano Lett.、Anal. Chem.、Biosens. Bioelectron.、Sens. Actuator B-Chem.、TrAC-Anal. Chem.等期刊。 教育与研究经历 / Experience 2019-07 至 今, 南京师范大学, 生命科学学院, 副教授 2018-09 至 2019-06, 南京师范大学, 生命科学学院, 讲师 2016-09 至 2018-08, 上海大学, 生物医学工程系, 博士后 2011-09 至 2016-06, 南京大学, 生物学, 博士 2007-09 至 2011-06, 南通大学, 生物技术, 学士
研究领域
生物电化学与生物医学测量学 Bioelectrochemistry, Bioelectronic Devices & Measurements 研究内容 / Research Interests 以生命体系中的电活性分子、电子传递链、电活性细胞等作为研究对象,解析生命体系的质荷传输及其反应机理,探究跨“生物-器件”微纳界面的质荷传输机制和特性,从而构建生物电子器件与微纳功能界面,进行生物活体的信号获取和功能调控研究,为面向生命健康的生物电子元件、生物传感器和医学诊疗技术开发提供跨学科理论基础与技术创新。 (1)核酸、蛋白质分子功能的生物电化学研究; (2)生物电子器件与微纳传感界面的设计与构建; (3)疾病分子靶标的精准筛查及医学检验新方法、新技术。 By using electroactive molecules, electron transport chains, and electroactive cells from biological systems, our studies elucidate fundamental bio-electrochemistry mechanisms: mass-charge transport and associated reaction processes, thus to investigate the mass-charge transfer acrossing bio/device interfaces at the “micro-nano” scales, aiming to construct advanced bioelectronic devices that encompasses both signal acquisition and functional regulation of living systems. We are trying to establish theoretical foundations and technological innovations for developing bioelectronic components, biosensors, and medical diagnostic/therapeutic technologies, ect. This interdisciplinary investigation bridges biological systems with electronic engineering, and may provide critical insights for next-generation innovations. (1)Bioelectrochemical Studies of Nucleic Acids and Proteins (2)Micro "Bio-Electrode" Interfaces for Bioelectronic Devices (3)Analytical Methods and Devices for Biomedical Applications
近期论文
一、生物电化学与生物传感器(Bioelectrochemistry & Biosensors) 1. Zhang, Y.; Zhu, J.; Zhao, J.; Wang, X.; Wei, T.; Gao, T.*; A single-microbe living bioelectronic sensor for intracellular amperometric analysis, Biosens. Bioelectron., 2024, 265: 116648. 2. Wang, B.; Zhao, J.; Zhang, J.; Wei, T.*; Han, K.*; Gao, T.*; Electrochemical biosensing interfaced with cell-free synthetic biology, TrAC-Trends Anal. Chem., 2024, 176, 117756. 3. Wang, B. G.; Zhu, J.; Wei, T. X.*; Zhang, Y. X.; Li, M. Y.; Zhang, Z. L.; Gao, T.*; Dai, Z. H.*; Interactional analysis of single mitochondrial function directly in living cell reveals the proton circuit decoupling of mitochondria at the preliminary stage of apoptosis, CCS Chem., 2024, DOI: 10.31635/ccschem.024.202404066. 4. Zhu, J.; Wang, B.; Zhang, Y.; Wei, T.; Gao, T.*; Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends, Biosens. Bioelectron., 2023, 237: 115480. 5. Guo, J.; Li, M.; Long, S.; Zhu, J.; Miao, P.; Wei, T.; Gao, T.*; Bio-inspired electrochemical detection of nitric oxide promoted by coordinating the histamine-iron phthalocyanine catalytic center on microelectrode, Anal. Chem., 2023, 95: 8842-8849. 6. Wang, X.; Gao, T.*; Zhu, J.; Long, S.; Zhao, S.; Yuan, L.*; Wang, Z.*; Fabrication of channeled and three-dimensional electrodes for the integrated capture and detection of invasive circulating tumor cells during hematogenous metastasis, Anal. Chem., 2023, 95: 2496-2503. 7. Shi, L.; Kuang, D.; Ma, X.; Jalalah, M.; Alsareii, S. A.; Gao, T.*; Harraz, F. A.*; Yang, J.; Li, G.*; Peptide assembled in a nano-confined space as a molecular rectifier for the availability of ionic current modulation, Nano Lett., 2022, 22: 1083-1090. 8. Guo, J.; Wei, T.; Huang, Q.; Li, M.; Yang, C.; Mou, J.; Shi, L.; Gao, T.*; Li, G.*; Direct acupuncture of nitric oxide by an electrochemical microsensor with high time-space resolution, Biosens. Bioelectron., 2022, 195: 113667. 9. Wang, L.; Li, H.; Shi, L.; Li, L.; Jia, F.; Gao, T.*; Li, G.*; In situ peptide self-assembly on ionic nanochannel for dynamic monitoring of MMPs in extracellular matrix, Biosens. Bioelectron., 2022, 195: 113671. 10. Shi, L.; Wang, L.; Ma, X.; Jalalah, M.; Alsareii, S. A.; Gao, T.*; Harraz, F. A.*; Li, G.*; Electrochemical trans-channel assay for efficient evaluation of tumor cell invasiveness, ACS Appl Mater Interfaces, 2021, 13: 17268-17275. 11. Shi, L.; Jia, F. J.; Wang, L.; Jalalah, M.; Al-Assiri, M.; Gao, T.*; Harraz, F. A.*; Li, G. X.*; Fabrication of an artificial ionic gate inspired by mercury-resistant bacteria for simple and sensitive detection of mercury ion, Sens. Actuator B-Chem., 2021, 326. 12. Wei, T.; Xu, Q.; Zou, C.; He, Z.; Tang, Y.; Gao, T.; Han, M.*; Dai, Z.*; A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity, Chin. Chem. Lett., 2021, 32: 1470-1474. 13. He, M. Y.; Guo, J. R.; Yang, J. H.; Yang, Y.; Zhao, S. Y.; Xu, Q.; Wei, T. X.; Ferraris, D. M.; Gao, T.*; Guo, Z. G.*; A highly selective electrochemical assay based on the Sakaguchi reaction for the detection of protein arginine methylation state, Electrochem. Commun., 2020, 118. 14. Zheng, J.; Gao, T.; Shi, H.; Huang, Y.; Xiang, Y.*; Li, G.*; Electrochemical analysis of 8-hydroxy-2'-deoxyguanosine with enhanced sensitivity based on exonuclease-mediated functional nucleic acid, Talanta, 2019, 199: 324-328. 15. Shi, L.; Mu, C.; Gao, T.; Chai, W.; Sheng, A.; Chen, T.; Yang, J.; Zhu, X.*; Li, G.*; Rhodopsin-like ionic gate fabricated with graphene oxide and isomeric DNA switch for efficient photocontrol of ion transport, J. Am. Chem. Soc., 2019, 141: 8239-8243. 16. Zhao, J. M.; Gao, T.* Genetic Engineering of Microorganisms with Electroactive Genes for the Fabrication of Electrochemical Microbial Biosensors. Methods in Molecular Biology- Synthetic Promoters, Springer Nature, 2024, 2844, 247–260.(专著/章节) 17. Zheng, J.; Fang, X. X.; Wei, T. X.; Gao, T.*. Engineered Living Materials: Applications in Electrochemical Biosensing and Diagnostics. Handbook of Material Engineering in Nanobiomedicine and Diagnostics, Springer Nature, 2024, in Press.(专著/章节) 18.高涛,郭嘉荣,牟俊慧,杨翠,徐晨韵。一种一氧化氮电化学传感微电极的制备方法及其应用。专利号:ZL202110556466.X。(专利) 二、生物医学测量(Biomedical Measurements) 1. Wang, L.; Xie, H.; Zhou, T.; Wang, M.; Yang, J.*; Gao, T.*; Li, G.*; Assembly of dye molecules in covalent organic frameworks for enhanced colorimetric biosensing, Anal. Chem., 2024, 96: 15720-15727. 2. Wang, H.; Fang, T.; Wang, J.; Zhang, M.; Mu, X.; Gao, T.*; Wei, T.*; Dai, Z.*; Adaptive size evolution of an MOFs-in-MOF nanovehicle for enhanced nucleus-targeted tumor chemotherapy, Nano Lett., 2024, 24: 10605-10613. 3. Xie, H.; Wang, L.; Yu, X.; Zhou, T.; Wang, M.; Yang, J.; Gao, T.*; Li, G.*; Synthesis of a COF-on-MOF hybrid nanomaterial for enhanced colorimetric biosensing, Talanta, 2024, 274: 126071. 4. Zhang, Y.; Xu, Q.; Wang, F.; Gao, T.*; Wei, T.*; Enzyme powered self-assembly of hydrogel biosensor for colorimetric detection of metabolites, Sens. Actuator B-Chem., 2023, 375: 132942. 5. Gao, T.; Zhao, S.; Sun, J.; Huang, Q.; Long, S.; Lv, M.; Ma, J.; Guo, Z.*; Li, G.*; Single-cell quantitative phenotyping via the aptamer-mounted Nest-PCR (Apt-nPCR), Anal. Chem., 2022, 94: 2383-2390. 6. Wang, X.; Gao, T.*; Zhu, J.; Long, S.; Zhao, S.; Yuan, L.*; Wang, Z.*; Fabrication of channeled and three-dimensional electrodes for the integrated capture and detection of invasive circulating tumor cells during hematogenous metastasis, Anal. Chem., 2023, 95: 2496-2503. 7. Wang, X.; Zhao, S.; Wang, Z.*; Gao, T.*; Platelets involved tumor cell EMT during circulation: Communications and interventions, Cell Commun Signal, 2022, 20: 82. 8. Wang, L.; Li, H.; Shi, L.; Li, L.; Jia, F.; Gao, T.*; Li, G.*; In situ peptide self-assembly on ionic nanochannel for dynamic monitoring of MMPs in extracellular matrix, Biosens. Bioelectron., 2022, 195: 113671. 9. Zeng, Y.; Gao, T.*; Li, G.*; Molecular modification and assembly at cell surface for biochemical analysis, SCIENTIA SINICA Vitae, 2021, 52: 373-386. 10. Wang, W. T.; Ma, Y.; Huang, M. L.; Liang, W. C.; Zhao, X. Q.; Li, Q. W.; Wang, S. W.; Hu, Z. G.; He, L. F.; Gao, T.; Chen, J. F.; Pan, F. Y.*; Guo, Z. G.*; Asymmetrical arginine dimethylation of histone H4 by 8-oxog/OGG1/PRMT1 is essential for oxidative stress-induced transcription activation, Free Radic. Biol. Med., 2021, 164: 175-186. 11. Shi, L.; Wang, L.; Ma, X.; Jalalah, M.; Alsareii, S. A.; Gao, T.*; Harraz, F. A.*; Li, G.*; Electrochemical trans-channel assay for efficient evaluation of tumor cell invasiveness, ACS Appl Mater Interfaces, 2021, 13: 17268-17275. 12. Yang, Y.; He, M.; Wei, T.; Sun, J.; Wu, S.; Gao, T.*; Guo, Z.*; Photo-affinity pulling down of low-affinity binding proteins mediated by post-translational modifications, Anal. Chim. Acta, 2020, 1107: 164-171. 13. He, M. Y.; Guo, J. R.; Yang, J. H.; Yang, Y.; Zhao, S. Y.; Xu, Q.; Wei, T. X.; Ferraris, D. M.; Gao, T.*; Guo, Z. G.*; A highly selective electrochemical assay based on the Sakaguchi reaction for the detection of protein arginine methylation state, Electrochem. Commun., 2020, 118. 14. Gao, T.; Li, L.; Chen, T.; Shi, L.; Yang, Y.*; Li, G.*; DNA-oriented shaping of cell features for the detection of rare disseminated tumor cells, Anal. Chem., 2019, 91: 1126-1132. 15. Gao, T.; Chai, W.; Shi, L.; Shi, H.; Sheng, A.; Yang, J.*; Li, G.*; A new colorimetric assay method for the detection of anti-hepatitis c virus antibody with high sensitivity, Analyst, 2019, 144: 6365-6370. 16. Gao, T.; Chen, T.; Feng, C.; He, X.; Mu, C.; Anzai, J. I.; Li, G.*; Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells, Nat Commun, 2019, 10: 2946. 17. Gao, T.; Li, G.* Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine-Bio-interfacial DNA self-assemblies for biomedical applications. Elsevier, 2022.(专著/章节) 18. Zhu, X. L.; Gao, T.* Nano-inspired Biosensors for Protein Assay with Clinical Applications, Spectrometry, Elsevier, 2019.(专著/章节) 19.高涛,杨嘉华,黄琼波,赵松岩,韦天香。一种光热响应DNA修饰的金纳米颗粒制备方法及核酸可视化扩增应用。专利号:202011198874.6。(专利) 20.高涛。一种基于光亲和共价连接的蛋白质分子弱相互作用捕获磁珠及其制备方法和应用。申请号:PCT/CN2020/116950。(专利) 21.高涛,郭志刚,何梦元,杨洋,韦天香。一种基于光亲和共价连接的蛋白质分子弱相互作用捕获磁珠的制备方法及其应用。专利号:ZL201911247058.5。(专利) 22.李根喜,高涛,李金龙,杨大威,谷时雨。一种基于DNA分子级联信号放大的膜蛋白分析方法。专利号:ZL 2016102324390.7。(专利)