赵全庭 照片

赵全庭

职称未知

所属大学: 华中师范大学

所属学院: 数学与统计学学院

邮箱:
zhaoquanting@126.com

个人主页:
http://maths.ccnu.edu.cn/info/1042/15538.htm

个人简介

教育经历 2004.09 --- 2008.07 华东师范大学 数学与应用数学 理学学士 2008.09 --- 2015.03 浙江大学 基础数学 理学博士

工作经历 2015.09 --- 现在 华中师范大学数统学院师资博士后

研究领域

复微分几何与复代数几何

近期论文

1. Q. Zhao, S. Rao, Applications of deformation formula of holomorphic one-forms of Riemann surface, Pacific J. Math., Vol.266, No.1, 2013. 2. Q. Zhao, S. Rao, New proofs of Local Torelli Theorems of Riemann surfaces, Acta Mathematique Sinica, Chinese series, Vol.58, No.5, 2015. 3. Q. Zhao, S. Rao, Extension formulas and deformation invariance of Hodge numbers, to appear in C. R. Math. Acad. Sci. Paris, 2015. 4. S. Rao, Q. Zhao, Several special complex structures and their deformation properties, J Geom Anal, Vol.28, No.4, 2018, Page 2984–3047. 5. Q. Gao, Q. Zhao, X. Zheng, Y. Ling, Convergence of Numerov's method for inverse Sturm-Liouville problems, Appl. Math. Comput., Vol.293, 2017, Page 1-17. 6. Q. Gao; Q. Zhao, M. Chen, On a modified Numerov's method for inverse Sturm-Liouville problems, Internat. Jour. Comput. Math., Vol.95, No.2, 2018, Page 412-426. 7. S. Rao; X. Wan, Q. Zhao; On local stabilities of p-Kähler structures,to appear in Compostio Math, 2018. 8. S. Rao; X. Wan; Q. Zhao; Power series proofs for local stabilities of Kähler and balanced structures with mild ddbar-lemma, submitted.