余文勇
副教授
个人简介
余文勇(Yu Wenyong,Associate Professor),副教授,博士生导师,IEEE Senior Member,中国机械工程学会成组与智能集成技术分会委员,IEEE TII、TIP、TCSVT、TASE,EAAI,MSSP,AEI等知名期刊长期审稿人。从事机器视觉及人工智能方面的研究工作,研究内容主要包括高速高精图像处理、视觉伺服和机器学习算法。课题组在国家自然科学基金、省市科技计划项目以及企业的支持下,根据精密加工、新能源、特种包装等行业对产品质量的需求,开发出整套具有自主知识产权的检测软件及装备,包括:复杂曲面缺陷检测系统,印刷缺陷在线检测系统,浮法玻璃缺陷在线检测系统,复合材料缺陷在线检测系统,涂装产品表面缺陷在线检测系统,二维码喷印缺陷在线检测系统,薄膜表面缺陷在线检测系统,透气度在线检测系统等,在国内外数百条生产线上长期稳定运行,成为产品质量控制不可或缺的重要手段。研究成果获湖北省自然科学一等奖、湖北省科技进步一等奖、湖北省科技进步二等奖、武汉市科技进步二等奖各1项。
研究领域
机器视觉及人工智能
近期论文
[1].Prior Normality Prompt Transformer for Multiclass Industrial Image Anomaly Detection, IEEE Transactions on Industrial Informatics, 2024.6 [2].Few-shot unseen defect segmentation for polycrystalline silicon panels with an interpretable dual subspace attention variational learning framework, Advanced Engineering Informatics, Vol.62, Part A, 2024, 102613 [3].Non-destructive classification of sturgeon stress using cross-modal data fusion and multi-input deep learning models, Computers and Electronics in Agriculture, Vol.220, 2024.5 [4].Template-based Feature Aggregation Network for industrial anomaly detection. Engineering Applications of Artificial Intelligence, 2024.5 [5].AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization. IEEE Transactions on Automation Science and Engineering, 2024.2 [6].Scalable Industrial Visual Anomaly Detection With Partial Semantics Aggregation Vision Transformer, IEEE Transactions on Instrumentation and Measurement, 2023.12 [7].A-Net: An A-Shape Lightweight Neural Network for Real-Time Surface Defect Segmentation. IEEE Transactions on Instrumentation and Measurement, 2024.1 [8].Learning Global-Local Correspondence with Semantic Bottleneck for Logical Anomaly Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2023.9 [9].Dual-Attention Transformer and Discriminative Flow for Industrial Visual Anomaly Detection. IEEE Transactions on Automation Science and Engineering, 2023.10 [10].Normal Reference Attention and Defective Feature Perception Network for Surface Defect Detection. IEEE Transactions on Instrumentation and Measurement, 2023.4 [11].DeepS: Accelerating 3D Mass Spectrometry Imaging via a Deep Neural Network. Analytical Chemistry, 2023, 95 [12].Multilayer positioning strategy for tubesheet welding robot based on point cloud model. IEEE Sensors Journal, 2023.5 [13].Unsupervised Defect Segmentation Via Forgetting-Inputting-Based Feature Fusion and Multiple Hierarchical Feature Difference. IEEE Sensors Journal, 2023.4 [14].A Feature Memory Rearrangement Network for Visual Inspection of Textured Surface Defects towards Edge Intelligent Manufacturing. IEEE Transactions on Automation Science and Engineering, 2022.9 [15].Joint weakly and fully supervised learning for surface defect segmentation from images. Signal Processing: Image Communication, 2022.9