个人简介
教育经历 2008.8 ~ 2012.8杨博翰大学 理学博士学位 - 研究生(博士)毕业 - Brigham Yound University under the guidance of Kening Lu 2004.9 ~ 2008.6南开大学 本科(学士) 工作经历 2012.8-2014.8明尼苏达大学 - 数学与应用所 - 博士后 2014.8-2016.5密歇根州立大学 - 数学系 - 访问助理教授 2016.5-至今华中科技大学 - 数学与统计学院 - 教授
研究领域
随机偏微分方程适定性以及随机集合包含问题 多尺度系统中的行波存在性与稳定性 拟线性可积潜水波方程孤立子轨道稳定和渐进稳定性 多尺度常微分方程的几何奇异摄动理论及其在生物数学和数学物理中的应用
近期论文
[1] Stability of solitary waves for the modified Camassa-Holm equation.Ann. PDE 7 (2021), no. 2, Paper No. 14, 35 pp., [2] Chen, Shuang; Duan, Jinqiao; Li, Ji Dynamics of the Tyson-Hong-Thron-Novak circadian oscillator model.Phys. D 420 (2021), Paper No. 132869, 16 pp, [3] Du, Zengji; Li, Ji; Li, Xiaowan The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275 (2018), no. 4, 988–1007.. [4] Li, Ji; Lu, Kening; Bates, Peter W. Geometric singular perturbation theory with real noise. J. Differential Equations 259 (2015), no. 10, 5137–5167.. [5] Kuttler, Kenneth L.; Li, Ji; Shillor, Meir Existence for dynamic contact of a stochastic viscoelastic Gao beam. Nonlinear Anal. Real World Appl. 22 (2015), 568–580.. [6] Kuttler, Kenneth L.; Li, Ji Generalized stochastic evolution equations. J. Differential Equations 257 (2014), no. 3, 816–842.. [7] Li, Ji; Lu, Kening; Bates, Peter W. Invariant foliations for random dynamical systems. Discrete Contin. Dyn. Syst. 34 (2014), no. 9, 3639–3666.. [8] Li, Ji; Lu, Kening; Bates, Peter Normally hyperbolic invariant manifolds for random dynamical systems: Part I—Persistence. Trans. Amer. Math. Soc. 365 (2013), no. 11, 5933–5966..