段永青
副教授
所属大学: 华中科技大学
所属学院: 机械科学与工程学院
个人简介
段永青(Duan Yongqing,Associate Professor),博士,华中科技大学机械学院副教授,硕士/博士生导师。入选湖北省杰青,中国科协青年人才托举工程。 在智能制造装备与技术全国重点实验室开展前沿领域科研工作,主要研究方向为柔性电子制造、新型显示工艺与装备。主持国基金面上项目、青年项目、国家重点研发专项子课题等项目。在Advanced Functional Materials、Nano Energy、Nanoscale等期刊发表SCI论文三十余篇,出版英文著作一部,申请/授权国家发明专利三十余项,获得湖北省自然科学一等奖、瑞士日内瓦国际发明金奖、湖北省自然科学优秀学术论文一等奖等奖项。
研究领域
柔性电子制造 新型显示工艺与装备 电喷微推进
近期论文
[1] Electrohydrodynamic direct-writing for flexible electronic manufacturing. Singapore: Springer, 2018. [2] High‐Resolution, Flexible, and Full‐Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionic‐Liquid‐Based Ink. Advanced Functional Materials, 2021, 31(28): 2100857. [3] High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure. Lab on a Chip, 2022, 22(20): 3877-3884. [4] Residual oscillation suppression via waveform optimization for stable electrohydrodynamic drop-on-demand printing. Additive Manufacturing, 2022, 55: 102849. [5] Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns. ACS Applied Materials & Interfaces, 2022, 14(12): 14712-14720. [6] Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication. Nanoscale, 2022, 14(37): 13452-13472. [7] High‐Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee‐Ring‐Free Quantum Dot Film. Advanced Materials Technologies, 2020, 5(10): 2000401. [8] Fabrication Techniques for Curved Electronics on Arbitrary Surfaces. Advanced Materials Technologies, 2020, 5(8): 2000093. [9] Morphology-programmable self-aligned microlens array for light extraction via electrohydrodynamic printing. Organic Electronics, 2020, 87: 105969. [10] Electrohydrodynamically Printed High‐Resolution Full‐Color Hybrid Perovskites. Advanced Functional Materials, 2019, 29(35): 1903294. [11] Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7(47): 14867-14873. [12] Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 2019, 6(4): 642-683. [13] Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40: 432-439. [14] Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers. Polymers, 2017, 9(9): 434. [15] Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Advanced materials, 2016, 28(45): 9881-9919.