王保祥 照片

王保祥

教授

所属大学: 北京大学

所属学院: 数学科学学院

邮箱:
wbx@math.pku.edu.cn

个人主页:
http://www.math.pku.edu.cn/jsdw/js_20180628175159671361/w_20180628175159671361/69966.htm

个人简介

教育经历 1993中科院工程物理所博士 工作经历 2002-北京大学数学科学学院教授 1997-2002河北大学数学与信息科学学院教授 1995-1997河北大学数学与信息科学学院副教授 1994-1995河北大学数学与信息科学学院讲师

科研项目 2003,1-2005,12Banach函数空间上的Bessel位势及其在PDE的应用国家自然科学基金

2000,1-2002,12非线性项含有导数的几个发展方程的初值问题国家自然科学基金(青年) 主讲课程 2002,9-2004,1高等数学(B)电子与元培计划本科

学术兼职

社会兼职 2006---Math.Review评论员

2005---2008FrontiMath.ChinaSPCU编委

近期论文

1.Isometric decomposition operators, function spaces E^lambda_{p,q} and applications to nonlinear evolution equations, J. of Funct. Anal., 233 (2006), 1--39 (with Zhao L ang Guo B)

2. Concentration phenomenon for the L^2 critical and super critical nonlinear Schrodinger equations in energy spaces, Commun. Contemp. Math. 8(2006), 309--330

3.The limit behavior of solutions for the complex Ginzburg-Landau equation,Commun.on Pure Appl. Math., (2002) 55, no.4, 481-508.

4.Large time behavior of solutions for critical and subcritical complex Ginzburg-Landau equations in , Science in China (Ser A), 46 (2003), 64-74.

5.On the duality mapping sets in abstract M spaces, Indag. Mathem.13(2002),1-9. (joint with H. Hudzik)

6.The Cauchy problem for Davey—Stewartson systems,Comm.on Pure Appl. Math. (1999) 52, 1477--1490. (joint with B. Guo)

7.On existence and scattering for critical and subcritical nonlinear Klein—Gordon equations in Hs, Nonlinear Anal. TMA , (1998) 31, 573—587.

6.Support functionals and smooth points in abstract M spaces , Proc.Amer.Math. Soc.,(1999) 127, 1761—1770 (joint with T.Wang)

7.Scattering of solutions for critical and subcritical nonlinear Klein--Gordon equations in,Disc. Cont. Dyn. Sys. (1999) 5, 753—763.

8.Approximative compactness in Orlicz spaces, J.of Approx.Theor.(1998),95, 82--89. (joint with H. Hudzik)

9.On weakly convergent sequence in Banach function spaces and the initial boundary problem for nonlinear Klein--Gordon--Schrodinger equations, Math. Meth. in the Appl. Sci. (2000) 23, 1655-1665

10.On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems, Science in China (Series A),(2001)44, No.8 (joint with B. Guo)

11.The smoothness of scattering operators for Sinh-Gordon and Nonlinear Schrodinger equations, Acta Mathematica Sinica, English Series,2002,18, 549-564.

12.The Global Cauchy problem and scattering of solutions for Nonlinear Schrodinger equations in, Differential and Integral Equations, (2002) 15, No.9, 1073-1083.

13.Bessel (Riesz) potential on Banach function spaces and their applications (II), On solutions for a class of nonlinear evolution equations,Nonlinear Analysis, TMA (2001), 47(2001,4283-4294

14.Bessel (Riesz) potentials on Banach function spaces and their applications I Theory,Acta Math.Sinica,(1998) 14, no. 3, 327—340

15.Lambda-coefficient of Orlicz sequence spaces,Colloq. Math. 59 (1995), 179--186.

16.On the convexity characteristic of Orlicz spaces,Math. Japonica ,37(1992), 691--699.

17.The inviscid limit for the derivative NLS equation, J.Math.Pure Appl. 83(2004) no. 4, 477-502 (joint with Y. Wang)

18.Exponential Besov spaces and their applications to nonlinear evolutions with dissipation., Comm on Pure Appl Anal. 3 (2004), 883--919.

19. Wang, Baoxiang; Hao, Chengchun; Hudzik, Henryk Energy scattering theory for the nonlinear Schr?dinger equations with exponential growth in lower spatial dimensions. J. Differential Equations 228 (2006), no. 1, 311--338.

20. Wang, Baoxiang; Hudzik, Henryk The global Cauchy problem for the NLS and NLKG with small rough data. J. Differential Equations 232 (2007), no. 1, 36--73.

21. Wang, Baoxiang; Huang, Chunyan Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differential Equations 239 (2007), no. 1, 213--250.

22. Huang, Chunyan; Wang, Baoxiang Inviscid limit for the energy-critical complex Ginzburg-Landau equation. J. Funct. Anal. 255 (2008), no. 3, 681--725.

23. Han, Lijia; Wang, Baoxiang Global wellposedness and limit behavior for the generalized finite-depth-fluid equation with small data in critical Besov spaces $\\dot B{}\\sp s\\sb {2,1}$. J. Differential Equations 245 (2008), no. 8, 2103--2144.

24. Guo, Zihua; Peng, Lizhong; Wang, Baoxiang Decay estimates for a class of wave equations. J. Funct. Anal. 254 (2008), no. 6, 1642--1660.